
A CTL Model Checker for
Stochastic Automata Networks?

Lucas Oleksinski, Claiton Correa, Fernando L. Dotti, and Afonso Sales ??

PUCRS - FACIN, Porto Alegre, Brazil
{lucas.oleksinski, claiton.correa}@acad.pucrs.br,

{fernando.dotti, afonso.sales}@pucrs.br

Abstract. Stochastic Automata Networks (SAN) is a Markovian for-
malism devoted to the quantitative evaluation of concurrent systems.
Unlike other Markovian formalisms and despite its interesting features,
SAN does not count with the support of model checking. This paper dis-
cusses the architecture, the main features and the initial results towards
the construction of a symbolic CTL Model Checker for SAN. A parallel
version of this model checker is also briefly discussed.

1 Introduction

Stochastic Automata Networks (SAN) was proposed by Plateau [12], being de-
voted to the quantitative evaluation of concurrent systems. It is a Markovian
formalism that allows modeling a system into several subsystems which can
interact with each other. Subsystems are represented by automata and inter-
actions by synchronizing transitions of cooperating automata on same events.
Dependencies among automata can also be defined, using functions. Functions
evaluate on the global state of the automata network and can be used to specify
the behavior of specific automata. The use of functions allows the description
of complex behaviors in a very compact way [1]. Quantitative analysis of SAN
models is possible using specialized software tools (e.g., PEPS [13] or SAN Lite-
Solver [14]), fundamentally allowing one to associate probabilities to the states
of the model, using a steady state or transient analysis.

While developing models for involved situations it is highly desirable to rea-
son about their computation histories and thus model checking becomes impor-
tant. Indeed, many formalisms for quantitative analysis count with the support of
specialized model checking tools. In the context of CTMC-based model checking,
we can mention PRISM [8], SMART [4] and CASPA [7]. Such support however
is lacking for SAN. In this paper we report our results towards the construc-
tion of the first SAN model checker. In this initial version, the tool is restricted
to CTL model checking opposed to the stochastic verification as offered by the
aforementioned tools.
? Paper partially sponsored by CNPq (560036/2010-8) and FAPERGS (PqG 1014867).

?? Afonso Sales receives grant from PUCRS (Edital 01/2012 – Programa de Apoio à
Atuação de Professores Horistas em Atividades de Pesquisa na PUCRS).



2

2 Tool overview

Fig. 1 illustrates the main processing steps of the SAN model checker. It has as
input a model written in the SAN modeling language [13], a CTL (Computation
Tree Logic) property, and an additional information if a witness or a counterex-
ample to the property is desired. As output it offers the answer whether the
property is true or false, and a witness or counterexample as chosen. The tool
supports the standard CTL where atomic propositions are assertions about the
global state of the automata network according to the SAN language [13].

The compilation of the SAN model generates a Markovian descriptor which
is used as the system transition relation, i.e., a set of tensors which operated by
generalized Kronecker algebra allows the achievement of next states. The initial
states of the model are those considered as reachable in the reachability decla-
ration of the SAN model. Multi-valued Decision Diagrams (MDD) are used to
encode the Reachable State Space (RSS) of the SAN model, which is calculated
using an extension [15] of the saturation based approach [3]. The satisfaction
sets calculation (SAT in Fig. 1) follows a breadth-first search algorithm. During
this process, the RSS is labelled with all subformulas of the input formula.

(MDD)
RSS

Descriptor
Markovian

generation

RSS

Model
SAN

State(s)
Initial

or Witness
Couterexamples

CTL
Property

RSS Labeled w/
Atomic Propositions

ENF−CTL

End

RSS Labeled w/

(sub)formulas
Witness

generation

Witness

Compilation Labeling

CTL Handling

SAT

yes

no

Fig. 1. The tool architecture.

Whenever a counterexample is desired, the tool negates the input formula
to generate a witness. The witness generator supports ENF-CTL operators and
generates trace structured witnesses. To enrich witness information, whenever
a branching is avoided the respective state of the trace is annotated with the
subformula that holds from that state.

A parallel approach was proposed that replicates the entire RSS and assigns
specific partitions of the state space to be computed by different nodes. Each
node may locally compute successor states even these cross partition borders,
without requiring communication. Communication is only required for fix-point
calculation, which is executed as rounds of synchronization between nodes.

3 Experiments

We report CTL model checking results1 on both sequential and parallel imple-
mentations of the model checker through set of experiments with two different
models: the dining philosophers (DP) problem [15] and a model for an ad hoc

1 As mentioned, our tool does not perform stochastic verification and thus numerical
analysis is not carried out.



3

wireless network protocol (WN) [6]. For the DP model, starvation, mutual exclu-
sion, deadlock presence and deadlock absence were checked for model variations
with and without deadlock, respectively. Considering the DP model with 15
philosophers, corresponding to RSS of 470,832, all mentioned properties needed
about 500 MB memory and 240 CPU seconds (using one core of a Intel Xeon
Quad-Core E5520 2.27 GHz machine). For some properties, such as deadlock
absence, the tool allows verification of a model with 20 philosophers which has
38,613,965 reachable states requiring around 600 MB memory and 1,650 CPU
seconds. We experienced the parallel version in a cluster with 15 processors for
the same DP model above with 15 philosophers. The worst speed-up took place
with the “deadlock absence” property and the best speed-up took place with the
“starvation” property, with speed-ups of 6 and 11, respectively. The verification
of the deadlock absence property took a peak of 330 MB per node memory while
the sequential solution took 500 MB. The starvation property took a peak of 140
MB per node memory while the sequential execution took 660 MB.

The WN model was build to obtain the end-to-end throughput traversing a
route of ad hoc nodes, taking into consideration the interference range among
nodes. Thus the model is build such that no two interferring nodes transmit at
the same time, resulting in no packet losses. Properties assuring this behavior
have been shown. With 28 ad hoc nodes the model resulted in a RSS of 568,518
and the property assuring that no two interfering nodes transmit at the same
time required verification time around 130 CPU seconds and 361.46 MB memory.
Using the parallel approach for the same WN case, for the same property as
above reported, models with 24, 26 and 28 ad hoc nodes were verified with 15
processors, leading to speed-ups of 4.91; 4.40 and 7.40, respectively. For models
with 28 ad hoc nodes, the verification had a peak of 289.08 MB per node memory
while the sequential solution 361.46 MB.

To assess the tool correctness we have carried out experiments with the
NuSMV tool. More specifically, a set of SAN models have been translated to
the NuSMV, generating transition systems equivalent to the SAN model’s un-
derlying Markov Chains, and have been checked for the same CTL properties,
leading to same results.

4 Conclusions and Future Works

In this paper we presented, at the authors’ best knowledge, the first tool for
model checking SAN models. We have discussed its key features, performance
results and also initial results on a parallel version. As a first version of the
SAN model checker, it has shown coherent results leading to a high confidence
in its correctness, however with low performance. Even considering hardware
differences, the results reported by PRISM [2], CASPA [7] and SMART [5] can
be clearly considered much superior.

In this version we have adopted a Kronecker-based representation of the tran-
sition relation due to the usage of functional elements in the transition matrices
which are necessary to represent SAN abstractions. The use of Kronecker repre-
sentation has a considerable impact since the computation of next states implies



4

that several tensors have to be operated, in a meaningful order, according to the
number of submodels (automata) and synchronizing events. Moreover, whenever
functions are used, they have to be evaluated in this process. In contrast, decision
diagram based representation [11, 10] would result in a more direct computation
of transitions. This aspect is to be addressed in future works. Another aspect
that we want to address is the use of saturation based model checking algo-
rithms. A first step in this directed has been made in [15] where the reachable
state space generation of SAN models is computed in a saturated way using both
decision diagrams and Kronecker representations. Related works using decision
diagrams, such as in [9], can contribute in relation to this aspect and must be
more closely investigated.

References

1. L. Brenner, P. Fernandes, and A. Sales. The Need for and the Advantages of Gen-
eralized Tensor Algebra for Structured Kronecker Representations. Int. Journal of
Simulation: Systems, Science & Technology (IJSIM), 6(3-4):52–60, 2005.

2. PRISM (Probabilistic Model Checker). http://www.prismmodelchecker.org/.
3. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An Efficient Iteration

Strategy for Symbolic State-Space Generation. In TACAS, volume 2031 of LNCS,
pages 328–342. Springer, 2001.

4. G. Ciardo, A.S. Miner, and M. Wan. Advanced features in SMART: the stochastic
model checking analyzer for reliability and timing. SIGMETRICS Performance
Evaluation Review, 36(4):58–63, 2009.

5. G. Ciardo, Y. Zhao, and X. Jin. Ten Years of Saturation: A Petri Net Perspective.
Transactions Petri Nets and Other Models of Concurrency, 5:51–95, 2012.

6. F.L. Dotti, P. Fernandes, A. Sales, and O.M. Santos. Modular Analytical Perfor-
mance Models for Ad Hoc Wireless Networks. In WiOpt 2005, pages 164–173.

7. M. Kuntz, M. Siegle, and E. Werner. Symbolic Performance and Dependability
Evaluation with the Tool CASPA. In FORTE Workshops 2004, volume 3236 of
LNCS, pages 293–307, Toledo, Spain, 2004. Springer.

8. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Prob-
abilistic Real-time Systems. In CAV’11, volume 6806 of LNCS, pages 585–591.
Springer-Verlag, 2011.

9. K. Lampka and M. Siegle. Activity-local symbolic state graph generation for high-
level stochastic models. In 13th MMB, pages 245–264. VDE Verlag, 2006.

10. K. Lampka and M. Siegle. Analysis of Markov reward models using zero-suppressed
multi-terminal BDDs. In VALUETOOLS, page 35, 2006.

11. A.S. Miner and D. Parker. Symbolic Representations and Analysis of Large Proba-
bilistic Systems. In Validation of Stochastic Systems, volume 2925 of LNCS, pages
296–338. Springer, 2004.

12. B. Plateau. On the stochastic structure of parallelism and synchronization models
for distributed algorithms. In ACM SIGMETRICS Conf. on Measurements and
Modeling of Computer Systems, pages 147–154, Austin, USA, 1985. ACM Press.

13. PEPS Project. http://www-id.imag.fr/Logiciels/peps/userguide.html.
14. A. Sales. SAN lite-solver: a user-friendly software tool to solve SAN models. In

SpringSim (TMS-DEVS), pages 44:9–16, Orlando, FL, USA, 2012. SCS/ACM.
15. A. Sales and B. Plateau. Reachable state space generation for structured models

which use functional transitions. In QEST’09, pages 269–278, Budapest, Hungary.


