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Abstract. As the number of distributed applications and the volume of gen-
erated data increase, support from robust data management systems becomes
even more necessary. Since these management systems possibly have to deal
with heavy workloads, in this paper we analyze the deferred update replication,
a successful technique to implement highly available and performing transac-
tional databases. Although it offers a strong consistency semantics, no enough
efforts have been invested to prove its properties. Due to its critical require-
ments, in this paper we verify the deferred update replication protocol using
model checking. A model of the deferred update replication protocol and a com-
prehensive set of safety and liveness properties are presented. According to our
investigation, all properties hold for the presented model, leading to a higher
confidence in the protocol’s correctness.

1. Introduction
The increase in the number of distributed applications and the high volume of data being
generated demand support from robust data management systems. Besides providing high
availability, these data management systems must be capable to scale up without affect-
ing performance nor consistency. Underlying protocols for reliable communication and
replication techniques are largely adopted in the development of those kind of systems.
Of special interest in this case is the deferred update technique, that aims to achieve both
high availability and performance of transactional dependable data management systems
[Pedone et al. 1997].

Like distributed algorithms in general, guaranteeing that update replication pro-
tocols run correctly and efficiently is not trivial. Although this class of protocols
suggests a strong consistency semantics, little efforts have been invested to formally
prove their properties. Most of the authors in the literature argue about the correct-
ness of the deferred update protocol reasoning in natural language [Garcia et al. 2011,
Pedone and Schiper 2012]. Even though this approach gives a general understanding of
the reasons behind design aspects of the implemented protocol, it hardly will detect non
trivial failures presented in the solution.

A few works introduce some kind of formal proof of correctness for the
deferred update replication technique [Pedone et al. 1997, Kemme and Alonso 2000,
Garcia et al. 2011], and a few contributions use the theorem proving approach

This work is partially sponsored by FAPERGS and CNPq projects SAN Model Checking.



[Schmidt and Pedone 2007, Armendáriz-Iñigo et al. 2009]. However we could not iden-
tify the use of semi-automated reasoning in the later cases. For the theorem proving
approach, a formal description of the model is needed for the reasoning process and the
reasoning itself can be conducted in a semi-automated or non automated way, the last one
being more error prone than the first. In either case, the verification process would be
arduous and time consuming.

This paper presents a formal verification of the deferred update replication proto-
col by using model checking. The model checking technique is very attractive due to its
simplicity of use combined with a solid theoretical foundation on verification approach.
While it does not require high skilled specialists as usually needed for theorem proving,
it offers a very expressive resource for properties specification through temporal logic.
Since the deferred update protocol strongly relies on the atomic broadcast protocol to en-
sure correct progress of the servers, we first present properties and a model for the atomic
broadcast which will be used as building block for the specification of the deferred update
protocol. We took Promela [Holzmann 1991] and Spin [Holzmann 1997] as modeling
language and model checking tool respectively. Promela offers abstractions very close
to the ones typically used while building distributed algorithms, such as sequential pro-
cesses, messages and channels.

The rest of the paper is structured as follow: Sections 2 and 3 illustrate the models
and verification for atomic broadcast and deferred update replication protocols. A discus-
sion about related work is presented in Section 4 and Section 5 concludes this paper.

2. A Promela Model for the Atomic Broadcast Protocol
The atomic broadcast protocol provides reliable communication channels for message
exchange in distributed environments. It guarantees that a group of communicating pro-
cesses delivers the same set of messages to every process following the same delivery
order [Défago et al. 2004]. Due to the ordering guarantees, this protocol is often used
by distributed algorithms such as replication algorithms. The total ordering delivery pro-
vides deterministic update on database replicas [Agrawal et al. 1997, Pedone et al. 1997,
Kemme and Alonso 2000].

Delivery guarantees are preserved since the protocol satisfies the following prop-
erties [Hadzilacos and Toueg 1994]:

• Validity: If a correct process broadcasts a message m, then it eventually delivers
m.

• Uniform Agreement: If a process delivers a message m, then all correct processes
eventually deliver m.

• Uniform Integrity: For any message m, every process delivers m at most once,
and only if m was previously broadcast by sender(m).

• Uniform Total Order: If both processes p and q deliver messages m and m′, then
p delivers m before m′, if and only if q delivers m before m′.

Next, we describe a simple model for the atomic broadcast and verify the proto-
col’s properties using model checking. In our model, every process pi running the pro-
tocol uses a channel abcasti for reliable communication. External processes that do not
participate in the protocol have no access to abcast channels.



Algorithm 1 shows the primitive send modeled in Promela [Holzmann 1991]. For
representation of message passing, operators ! and ? are used for write and read over chan-
nels, respectively. An atomic block is used to ensure that no other process will execute
while the send operation in execution has not finished. The number of channels used by
the protocol is represented by num servers.

Algorithm 1 Send(m)
1: atomic {
2: do
3: :: i < num servers→
4: assert(nfull(abcast[i]));
5: abcast[i]!m;
6: i++;
7: :: i == num servers→
8: i = 0;
9: break;

10: od
11: abcast send count++;
12: }

Since Promela channels are bounded, write operation in a full channel causes
the waiting process to block and the atomic block, if any, looses atomicity. The assert
command (line 4) is used to check if the abcast channel is not full before writing in
the channel. This means that the channel size has to be calculated such that it does not
become full during verification. With this the sender process will not block and atomicity
is assured. If the channel is full, the assert statement will produce an error during the
verification. It is important because atomicity is preserved only if no blocking commands
are executed in the atomic block. In case of assertion error, it is necessary to set a larger
buffer size to the channel and resume the verification.

Primitive deliver performs a read on abcast channel. According to Promela se-
mantics, reading messages from a channel follows a FIFO order. Thus, during a reading
operation, pi consumes the oldest message from channel abcasti. As described in Algo-
rithm 2, an array of channels allows processes p0 to pn−1 to read messages from channels
abcast[0] to abcast[n− 1], respectively.

Algorithm 2 Deliver(m)
1: do
2: :: abcast[id]?m→
3: skip
4: od

In this example, the content of a message is represented by m. Although it has
not been described in the algorithm, right after delivering a message, a process p[i] copies
m to a list of received messages (p[i].msg list[]). That step just mimics an application
adding each delivered message to a list. Moreover, in order to differentiate messages, an
incremental monotonic counter is used to generate exclusive message’s content.



We set up a scenario with 3 processes executing and a maximum number of 8
atomic broadcast messages being sent by them. Due to the exhaustive combination among
processes execution, the model checker tool creates a total state space containing all pos-
sible execution behaviors for this model. That is, traces considering every possible order
of execution among the processes are represented.

In order to specify atomic broadcast properties we use Linear Temporal Logic
(LTL) formulas [Manna and Pnueli 1991]. LTL allows representation and reasoning
about propositions qualified in terms of time. Thus, it is possible to express formulas
considering the future of the paths. Next we state atomic broadcast properties using LTL
formulas:

Validity: This property states that if a correct process pi broadcasts a message m,
then m will be eventually delivered to pi. We added arrays sent[] and delivered[] to our
model for verification purposes. sent[i] (delivered[i]) is updated whenever a new mes-
sage is sent (delivered) by the ith process. Propositions p1 send m1 and p1 deliver m1
are defined as sent[1] = m1 and delivered[1] = m1, respectively. Thereafter, we write
validity property in LTL as follows: �(p1 send m1→ ♦p1 deliver m1).

Operators � and ♦ represent the globally and eventually conditions. Thus, for all
states in generated traces, if pi send m1 is true, then in a future state pi deliver m1 must
be true.

Although we have illustrated formulas for individual instances m1 and m2, we also
checked the formulas for general messages mi and mj with i and j representing other
scenarios. The processes in this model are identical, that means there is no difference
on their behaviors. Therefore, we do not need to check every property for processes
individually. Once a property holds for p1, it also holds for other processes pi.

Uniform Agreement: If a process delivers a message m, then all correct processes
eventually deliver m. In other words, uniform agreement states that a message m will be
delivered to every process sooner or latter. Thus, we can write uniform agreement formula
in LTL as follow: (♦p1 deliver m1)→ (♦p2 deliver m1 ∧ ♦p3 deliver m1).

The use of operator ♦ (eventually) indicates that there is a time in the future in
which message m1 will be delivered to each process.

Uniform Integrity: For any message m, every process delivers m at most once,
and only if m was previously sent by a process. To check this property, we first ver-
ify that a message m is delivered iff m was previously sent by a process using the
precedence pattern described in [Salamah et al. 2005]: ¬p1 deliver m1 U (m1 sent ∨
�¬p1 deliver m1). That means m1 will never be delivered until m1 has been sent by
some process (m1 sent is defined as sent[0] = m1 ∨ sent[1] = m1 ∨ sent[2] = m1).

In order to check that every process delivers m at most once, we used Promela’s
assert statements which verify whether a boolean condition specified holds. Since we
have distinct messages being sent, and each process has a list with delivered messages
(msg list[]), we express the following boolean condition: ∀0 ≤ i, j < total messages∧
i 6= j, (p[id].msg list[i] 6= p[id].msg list[j]) ∨ p[id].msg list[i] = ∅. The assert state-
ment checks the boolean condition whenever a message is delivered. As expected, the
assertion is always true, i.e. the same message is not delivered twice or more.



Uniform Total Order: If processes pi and pj both deliver messages m and m′,
then pi delivers m before m′, iff pj delivers m before m′. That means all processes must
deliver all messages at the same order.

In addition to proposition p1 deliver m1, we define p1 deliver m2 as
delivered[1] = m2, p2 deliver m1 as delivered[2] = m1, and p2 deliver m2 as
delivered[2] = m2. Thus, we can state the uniform total order property through
the LTL formula: �(p1 deliver m1 → ♦p1 deliver m2) → �(p2 deliver m1 →
♦p2 deliver m2).

All formulas presented above are satisfied by our model. That means the speci-
fication holds atomic broadcast properties. The state space generated by this model was
easily tractable by Spin and the executions took less than 1 minute and allocated at most
400 MB of memory.

3. Deferred Update Replication
In this paper we focus on the deferred update replication technique. When compared to
primary-backup or state-machine replication, this technique presents better performance
[Pedone et al. 1997, Kemme and Alonso 2000, Garcia et al. 2011, Luiz et al. 2011]. Its
success stems from the independence of coordination between servers during the execu-
tion phase. Initially, a single server is chosen to serve a given transaction and is responsi-
ble for the execution of the transaction’s operations locally. Only when a client requests
the commit of a transaction, the request and some additional transaction’s information
are broadcast to all servers for certification. This optimistic concurrency control reduces
dramatically the communication and synchronization between replicated servers.

3.1. Deferred Update Replication Model

Our model is based on algorithms defined in [Pedone and Schiper 2012] and represents
transaction and server processes. The transaction process models a transaction being
executed by a client, while the server process reproduces a server replica.

Figure 1 depicts a single transaction execution. A transaction life cycle is sepa-
rated in two phases: execution and termination. Execution Phase encompasses all read
and write operations, whilst Termination Phase certificates a commit request.

Each transaction keeps a read and a write set. The write set (ws) is a set of tuples
with <item, value> and the read set (rs) is a set of tuples with <item, value, version>.
Write operations are executed locally by the transaction. Every updated item is kept local
to the client in the ws until the transaction enters the termination phase. If a read operation
accesses an item already in ws, the data value is copied directly from ws. Otherwise, if
read item is not in ws, the read operation requests the item value from a server replica.

After executing all read and write operations, the Termination Phase starts by
sending a commit request to all replicated servers. Besides containing client and trans-
action identifiers, the commit request also propagates the rs and ws. This information is
used by the server in the certification test. If the transaction’s rs contains stale informa-
tion, then the server decides to abort the transaction.

Differently from messages sent during the Execution Phase, the commit request is
sent through the atomic broadcast protocol (solid lines in Figure 1). That is necessary to



Figure 1. Transaction phases

enforce replicas to receive ongoing transactions in the same order. Once all servers are
fully replicated and receive commit messages in the same order, correct servers will take
the same decisions in the same order, committing or aborting transactions.

Algorithms 3 and 4 are high level descriptions of transaction and server processes.
Message passing over common channels are represented by operators ! and ?. Notice,
though, atomic broadcast messages are sent through the abcast building block described
in previous section. The reuse makes the modeling process simpler and the generated
model relies on the building block properties previously verified.

Algorithm 3 T(cid, t)
1: ws← ∅; rs← ∅; i← 0;
2: choose randomly one of the replica servers s
3: while t.getOp(i) 6= commit ∧ t.getOp(i) 6= abort do
4: if t.getOp(i) = write then
5: ws← ws ∪ (t.getItem(i), t.getV alue(i))

6: if t.getOp(i) = read then
7: if t.getItem(i) ∈ ws then
8: return v, s.t. (t.getItem(i), v) ∈ ws
9: else

10: c2s[s]!read, t.getItem(i), cid
11: s2c[cid]?v, version from s
12: rs← rs ∪ (t.getItem(i), v, version)

13: i++;
14: if t.getOp(i) = commit then
15: abcast.send(com req, cid, t.id, rs, ws)
16: s2c[cid]?outcome, s
17: t.result = outcome
18: else
19: t.result = abort

Before executing operations, one server is randomly selected (l. 2 of Algorithm



3). Write operations do not require communication with the server initially. Instead,
they are stored in the write set (ws) (l. 3-4). If a read operation accesses a data item
previously updated by the current transaction, then the data value is retrieved from ws
(l. 7-8). Otherwise, a read request is sent to the selected server and the received value is
added to rs (l. 10-12). When there is no additional read or write operations to execute, the
transaction either requests for commit or abort (l. 14 and 18). Further, a commit request
message is sent to all replicated servers by atomic broadcast (l. 15). This optimistic
approach avoids several communication’s rounds throughout the transaction execution.

The server side awaits for messages read request or commit request (l. 4 and 6 of
Algorithm 4). Upon receiving a read request, the server retrieves its value and version for
the data item requested (l. 5). For simplicity and reduction of the final size of generated
state space, there are only two items in our model (x and y).

Upon receiving a commit request, a certification test verifies if the ongoing trans-
actions ensures serializability [Bernstein et al. 1987]. The server checks if the transac-
tion’s read set contains stale items comparing each item’s version from rs to the respective
item’s version in the database. If at least one received item is out of date, the transaction
must be aborted (l. 8-12). Otherwise the server decides to commit the transaction. That
consists in update item’s local version in database, performs all updates according to ws
and sent a commit outcome to the requesting transaction (l. 15-20).

Algorithm 4 Server(id)
1: lastCommitted← 0
2: db[id].setV ersion(x, 0); db[id].setV ersion(y, 0)
3: while true do
4: :: c2s[id]?read, item, cid→
5: s2c[cid]!db[id].getV al(item), db[id].getV ersion(item)
6: :: abcast.deliver(com req, cid, t.id, rs, ws)→
7: i← 0; j ← 0; abort← false
8: while rs[i].getItem() 6= ∅ do
9: if db[id].getV ersion(rs[i].getItem()) > rs[i].getV ersion() then

10: s2c[cid]!abort, t.id
11: abort← true
12: break
13: i++
14: if ¬abort then
15: lastCommitted++
16: while ws[j].getItem() 6= ∅ do
17: db[id].addV ersion(ws[j].getItem())
18: db[id].setItem(item,ws[j].getV al())
19: j++
20: s2c[cid]!commit, t.id

Although Pedone et. al [Pedone and Schiper 2012] propose optimizations for ex-
ecution of read only transactions, this aspect has not been yet analyzed thoroughly in our
research. Thus, we use the certification test to ensure serializability without distinction
between read only or updating transactions.



3.2. Properties Verification

The correct behavior of the protocol can be described by a set of properties. In our in-
vestigation, properties were separated in two groups. The first one refers to aspects of
the replication approach, such as termination, consistency and agreement in replicated
databases. The second specifies scenarios with particular conflicting transactions in order
to check if the protocol preserves conflict serializability isolation level.

The scenarios for verification are set up with 2 replicated database servers and
3 transactions t1, t2, and t3, all executing concurrently. Read and write operations are
given by ri(item) and wi(item, value), respectively, and they are followed by a commit
(ci) or abort (ai) operation. Transactions t1 and t2 are used to specify a particular case
of concurrency, while t3 exploit the non-determinism of model checking to generate any
combination of read and write operations over data items x and y. Therefore, during the
verification, the transaction t3 will execute any possible sequence of 3 operations before
requesting for commit or abort.

Although t1 and t2 express conflicting transactions, the non-determinism of model
checking combined with the random generation of t3 increases the concurrency among
transactions’ operations. It is a very effective approach, once it increases the verification
coverage by inserting automatically execution histories that could hardly be perceived.

3.2.1. Replication Properties

The properties introduced in this section refer to the correct behavior expected by the
replication protocol. These safety and liveness properties express termination of trans-
actions, consistency among replicated databases and agreement in transaction’s result by
the replicas.

For verification we set up transactions t1 and t2 as w1(x, 11), r1(y), w1(y, 21), c1,
and r2(y), r2(x), w2(x, 12), c2, respectively and t3 executes up to 3 operations chosen non
deterministically before request for commit or abort.

T1 – Transaction Termination: If a transaction is started, then it eventually is
decided, i.e. it receives a result (commit or abort) from servers.

For verification purposes, we first define propositions t1 started = true as
t1.started = true and t1 decided as t1.result 6= 0, where t1.started is a boolean vari-
able that is set up to true when t1 starts. Then we state the property T1 as an LTL formula
in the form of: �(t1 started→♦t1 decided)

The formula specifies that whenever t1 is started it is eventually decided.

T2 – Uniform Total Order: If two servers si and sj execute transactions t and t′,
then si executes t before t′, if and only if sj executes t before t′.

A transaction finishes its execution in a server once the server answers a commit
or abort to that transaction in response to a commit request. Proposition si finishes tj
is defined as si.decided[j] = commit ∨ si.decided[j] = abort and it represents the
server decision for a given transaction. Then, the property T2 is specified by the formula
�(s1 finishes t1→ ♦s1 finishes t2)→ �(s2 finishes t1→ ♦s2 finishes t2).



Despite the formula presented above, the use of compositional reasoning would
provide a systematic approach to modular verification. Once the deferred update repli-
cation model reuses the atomic broadcast model to broadcast messages, the properties
verified in previous section would be valid in deferred update replication model as well.

DB1 – Uniform Consistency (Versions): Whenever a server si updates an item
x to a version v, then every replicated server sj updates the item x to version v in its
instance of the database.

Database replicas consistency is provided once all replicas eventually update the
same data items in the same order. In order to check consistency among replica’s versions,
we verify if (i) a given item x can be updated in a single replica dbi; (ii) for those cases
where x is updated, there is no other version of x between versions vi and vi+1; (iii) all
replicated servers execute the same sequence of updates over an item x.

We first need to prove that there are some traces in which the item x is updated
to versions v1 and v2 (all data items start with version v0 in our model). Once the model
checker generates traces for every possible concurrent execution among transactions as
well as all combinations of read and write operations for transaction t3, it is expected to
have situations in which x is updated to v1 and v2.

The demonstration of a witness path showing both updates is done by contra-
diction. Let’s say that data item x in replica db1 will never be updated to versions
v1 and v2. We can describe it in LTL using the absence pattern [Salamah et al. 2005]:
�¬(♦db1xv1 ∧ ♦db1xv2), where propositions db1xv1 and db1xv2 are defined as
db[0].x.version[1] 6= ∅ and db[0].x.version[2] 6= ∅, respectively. As expected, this
property does not hold and a counterexample showing a trace with item x being updated
to versions v1 and v2 is generated by the model checker tool.

From now on we can check properties (ii) and (iii) against those traces where
item x is updated. The correct order for successive updates is verified by the formula
(♦db1xv1 ∧ ♦db1xv2) → �(db1xv1 → ♦db1xv2). Proposition on the left hand side
of the logical implication guarantees that traces in which x is not updated twice will not
invalidate the formula. On the right hand side of implication we use a response pattern
[Salamah et al. 2005], where db1xv2 comes after db1xv1 globally.

After checking that a single replica is able to update items and that items’ ver-
sion increments in a sequential order, we verify that different replicas perform the same
updates in the same order. We state this property as: (�(db1xvi → ♦db1xvi+1)) →
�(db2xvi → ♦db2xvi+1). That means always the replica db1 updates x from version vi
to vi+1, then the replica db2 also updates x in the same order.

DB2 – Uniform Consistency (Values): Two replicated database dbi and dbj have
the same value for a same item’s version vi.

That means the value updated in a replica must be the same for the respective
version in other replicas. Once we have already verified that different replicas perform
the same sequence of updates (property DB1), we check whether the updated values are
the same. We use contradiction to show that two replica servers db1 and db2 eventually
update an item x to the same version. The formula �(db1xvi → �¬dbx same version)
states that if db1 has x at version vi : 1 ≤ i ≤ 3, then both replicas db1 and db2 will



never have item x at the same version. As expected this property is invalid and the model
checker shows a witness path with cases where both replicas update x to the same version.

Thereafter, we can check whether item values for the same version in dif-
ferent databases are equal: �(dbx same version → dbx same value), where
dbx same version is defined as db[0].x.current version = db[1].x.current version
and dbx same value is defined as db[0].x.current value = db[1].x.current value.

TDB1 – Agreement: Whenever a transaction t has been decided, all replicated
servers si have previously decided t with the same result.

The transaction result observed by the client must be the same decided by all
replicas. In order to check this formula, the following statements must be valid: (i) if
replica db1 decides to commit, then replica db2 also decides to commit; and (ii) if any
replica decided to commit, then transaction’s result must be commit. Before describing
LTL formulas, we define the propositions si commits tj as si.decided[j] = commit, and
t1 commit as t1.result = commit. Then we split property TDB1 in two LTL formulas:

TDB1(i): �(¬s1 finishes t1 → ♦s1 commits t1) → �(¬s2 finishes t1 →
♦s2 commits t1);

TDB1(ii): �(s1 commits t1→ ♦t1 commit)

3.2.2. Isolation Level Properties

The set of properties presented so far focused mainly on verification of termination
and consistency guarantees for the database replicas. However, transactions with con-
flicting operations would still incur in inconsistencies due to wrong data being ma-
nipulated by conflicting operations. Those inconsistencies may happen depending on
isolation level provided by the concurrency management protocol [Adya et al. 2000,
Kemme and Alonso 2000].

A conflict serializability isolation level requires a history to be conflict–equivalent
to a serial history. Lower levels of isolation are less restrictive in terms of concurrency, but
they may present inconsistencies. Berenson et al. [Berenson et al. 1995] presents a study
of the isolation level semantics based on observations of some phenomena, like dirty read,
lost update, non repeatable read, and read/write skew. Less restrictive isolation levels are
susceptible to anomalies caused by some of those phenomena.

The verification scenarios discussed next were devised in order to validate the
serializability isolation level provided by the deferred update replication protocol. The
model was set up with 3 concurrent transactions. Transactions t1 and t2 are set up with
conflicting operations that might lead to a specific phenomenon. Transaction t3 can exe-
cute every possible sequence of 3 operations over x or y before requesting for commit or
abort. Next we describe some phenomena and then verify if the deferred update protocol
disallows those anomalous effects.

Non repeatable read: Transaction t1 reads a data item. A transaction t2 then
modifies that data item and commits. If t1 then attempts to reread the data item, it re-
ceives a modified value. Transactions are set up as t1 : r1(x), w1(y, 21), r1(x), c1 and
t2 : w2(x, 12), r2(y), w2(y, 22), c2. A possible history that exemplifies this phenomenon



is h : r1(x)..w2(x, 12)..r1(x).. (c1 and c2 occur in any order)1.

In order to avoid this anomaly, t1 must abort whenever it reads two different ver-
sions for a same data item. We check this behavior with an LTL formula in the form of:
♦(t1rx v1 ∧ ♦t1rx v2) → ♦t1abort where tkrx vj is true iff ∃i | i ∈ tk.rs ∧ i.item =
x ∧ i.version = j. The property holds, i.e. all histories in which a transaction reads two
different versions for a same data item result in an abort decision.

Lost Update: Transaction t1 reads a data item and then t2 updates the data item.
Based on its earlier read value, t1 updates the data item and commits. The value updated
by t2 will be lost. Transactions are set up as t1 : r1(x), w1(x, 11), w1(y, 21), c1 and t2 :
w2(x, 12), r2(y), r2(x), c2. A possible history that exemplifies this phenomenon is h :
r1(x)..w2(x, 12)..w1(x, 11)..c1..c2.

By keeping updated items in the write set, each transaction isolates its local up-
dates from potential updates being performed by other transactions until the transaction
terminates. We verify this isolation property through the LTL formula �(t2wx val12→
♦t2rx val12). The formula is true once w2(x, 12) happens before r2(x) and values
wrote by other transactions (e.g. w1(x, 11) or any update from t3) should not be vis-
ible by t2 during its execution. Propositions t2wx val12 and t2rx val12 are given by
∃i | i ∈ t2.ws∧i.item = x∧i.value = 12, and ∃j | j ∈ t2.rs∧j.item = x∧j.value = 12.

Dirty read: Transaction t1 modifies a data item. A transaction t2 then reads
that data item before t1 finishes the transaction. If t1 then aborts, t2 has read a data
item that had never really existed. Transactions are set up as t1 : w1(x, 11), r1(y), a1
and t2 : r2(y), r2(x), r2(x), c2. A possible history that exemplifies this phenomenon is
h : w1(x, 11)..r2(x)..a1..c2.

Once transactions keep their updated values locally, there is no way to interfere
in the values read by other transactions. The updated values will just be perceived by
others after the transaction commits. Considering transactions t1, t2, and t3, we can check
that t2 will never read a value 11 for x describing the absence pattern in the formula:
�¬(t2rx val11), where the proposition t2rx val11 is given by @i | i ∈ t2.rs ∧ i.item =
x ∧ i.value = 11.

Write skew: Transaction t1 reads x and y. Another transaction t2 reads x and
y, writes x, and commits. Then t1 writes y. If there were a constraint between x and
y, it might be violated. Transactions are set up as t1 : r1(x), r1(y), w1(y, 21), c1 and
t2 : r2(x), r2(y), w2(x, 12), c2. A possible history that exemplifies this phenomenon is
h : r1(x)..r2(y)..w2(x, 12)..w1(y, 21).. (c1 and c2 occur in any order).

Once the deferred update replication protocol preserves serializability isolation
level, it must avoid this anomaly by, for example, aborting one of the conflicting transac-
tions. Whenever the operation r2(y) happens before c1, and c1 happens before t2 request
for commit, then servers s1 and s2 must, obligatorily, decide to abort t2. This can be
checked with the formula (♦(s1 commits t1 ∧ ¬s1 finishes t2 ∧ ¬s2 finishes t2) ∧
((¬s1 commits t1 ∧ ¬s2 commits t1) U t2ry)) → ♦t2abort. The formula shows that
if t1 is committed in s1, and t2 not yet committed, and t2 reads y before t1 is committed,

1For the sake of simplicity, irrelevant operations for illustration of the phenomenon are omitted in h.
The .. in the history suppresses any possible sequence of interleaved operations from t1 and t2.



then t2 will abort.

Except by contradiction formulas (DB1(i) and DB2(i)), which were intention-
ally used to expose witness paths for desirable behaviors, all other specified formulas
hold. That means the deferred update replication model satisfied the properties enunciated
above. The model checker Spin was set up with partial order reduction and compression
enabled. The experiments were performed in a computer with CPU of 6 cores and 2.66
GHz, and 32 GB of main memory. Table 1 exhibits the verification results.

Table 1. Resources allocated for Deferred Update Replication model
Formula Stored States Memory (MB) Time
T1 50453993 3670.071 12 min
T2 60330993 4204.511 16 min
DB1(i) 3551454 350.263 33 sec
DB1(ii) 55748067 3959.893 13 min
DB1(iii) 68001328 4612.778 21 min
DB2(i) 47 129.106 1 sec
DB2(ii) 26440649 1898.649 4 min
TDB1(i) 53556032 3842.877 12 min
TDB1(ii) 32962609 2743.100 6 min
Non Repeatable Read 63838571 5032.491 13 min
Lost Update 40962043 3575.372 8 min
Dirty Read 20564107 1476.934 3 min
Write Skew 53473325 4162.453 8 min

4. Related Work
Most of the authors in literature justify correctness of replication protocols in a
rather informal way without support of formal methods. Specially for the de-
ferred update replication, most researchers sketch proofs of their designs in a natu-
ral language description [Kemme and Alonso 2000, Garcia et al. 2011, Luiz et al. 2011,
Pedone and Schiper 2012]. However, due to the high concurrency level and inherent com-
plexity of environments in which those protocols execute, a formal verification of those
protocols is required.

Armedáriz-Iñigo et al. [Armendáriz-Iñigo et al. 2009] present a formal specifi-
cation and correctness proof for replicated database systems. They carefully describe
database replicas and the underlying replication protocol. Similar to our work, they check
properties for atomic broadcast communication as well as database consistency provided
by a certification-based protocol. A small difference between their and our work is that
the protocol they analyzed assumes snapshot isolation level of consistency while the repli-
cation protocol we presented preserves serializability. They used I/O automata to describe
system’s behavior and verified system’s properties through theorem proving.

Schmidt et al. [Schmidt and Pedone 2007] formally proved that a generic deferred
update protocol preserves the serializability property. First they modeled a serial database
and the termination phase of the protocol using TLA+. Then, by using refinement map-
ping, they proved that the states generated by the termination phase of the protocol are



equivalent to those generated by the serial database model. The authors described a deduc-
tive correctness proof, combining theorem proving and refinement mapping techniques.

In this paper we illustrated how useful model checking is for verification of
data replication management protocols. Compared to [Schmidt and Pedone 2007] and
[Armendáriz-Iñigo et al. 2009], the main advantages of this approach is the automatic
verification and a very expressive description of properties by using of temporal logic.
Moreover, due to its abstraction level, Promela models are closer to implementation and
more familiar to distributed system developers if compared to I/O automata and TLA+.
This can help to better bridge the gaps between model and implementation.

5. Conclusion
This paper illustrated the use of model checking for database replication techniques. Spe-
cially, we recall the deferred update replication algorithm, that has been successfully
adopted to increase availability with good performance. The experiments presented in
this paper consolidate a first step on formal verification of deferred update replication
protocol using model checking.

The use of Promela language provides a concise specification of the protocol in an
algorithmic style. Properties are represented in LTL and their verification allowed us to
observe the correct behavior expected by the protocol. In fact, temporal logic provided a
very natural way to specify temporal relationships among operations executed throughout
the complete history of the model computation. Section 3.2 demonstrated how to specify
some common concurrency scenarios and how to check if undesirable phenomena affect
the correctness of the protocol.

Another subject addressed by this paper is how to create models from smaller
models previously verified. Modular approaches are common in distributed systems de-
velopment, where specialized modules are coupled to a same system. For instance, a
reliable system would be equipped with failure detectors, reliable channels (e.g. imple-
menting atomic broadcast), or security components. Although we checked the uniform
total order property in both, atomic broadcast and deferred update replication models,
further development through compositional reasoning [Dotti et al. 2006] would provide a
systematic approach to modular verification using building block models.

Extensions of the deferred update protocol tolerate crash or byzantine failure mod-
els [Luiz et al. 2011, Pedone and Schiper 2012]. In this direction, a next step for our work
is to check protocol correctness under certain failure behaviors. It can be done by auto-
matic insertion of failures to the model, followed by model checking [Dotti et al. 2005].
Fault injection combined to model checking is very attractive, since it is capable to repre-
sent non trivial faulty scenarios and disclosure misbehaviors hardly perceptible.
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