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‡Universitá della Svizzera italiana (USI), Switzerland

Email: fernando.pedone@usi.ch

Abstract—Many services used in large scale web applications
should be able to tolerate faults without impacting their perfor-
mance. State machine replication is a well-known approach to
implementing fault-tolerant services, providing high availability
and strong consistency. To boost the performance of state
machine replication, recent proposals have introduced parallel
execution of commands. In parallel state machine replication,
incoming commands may or may not depend on other commands
that are waiting for execution. Although dependent commands
must be processed in the same relative order at every replica to
avoid inconsistencies, independent commands can be executed
in parallel and benefit from multi-core architectures. Since
many application workloads are mostly composed of indepen-
dent commands, these parallel models promise high throughput
without sacrificing strong consistency. The efficient execution
of commands in such environments, however, requires effective
scheduling strategies. Existing approaches rely on dependency
tracking based on pairwise comparison between commands,
which introduces scheduling contention. In this paper, we propose
a new and highly efficient scheduler for parallel state machine
replication. Our scheduler considers batches of commands, in-
stead of commands individually. Moreover, each batch of com-
mands is augmented with a compact data structure that encodes
commands information needed to the dependency analysis. We
show, by means of experimental evaluation, that our technique
outperforms schedulers for parallel state machine replication by
a fairly large margin.
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I. INTRODUCTION

Several online services must be designed for both high
availability and high throughput. State Machine Replication
(SMR) [1], [2] is a well-known approach to increase service
availability by tolerating replica failures. According to the
SMR’s execution model, every service replica receives and
executes the same commands in the same order. Since replicas
start with the same initial state and command execution
must be deterministic, every replica will traverse the same
sequence of states and produce the same output. Consequently,
state machine replication ensures strong consistency (or more
precisely, linearizability [3], [4]).

Many large online services use the SMR approach. Notable
examples are Google’s Chubby [5] and Apache Zookeeper [6].
Chubby is used by Borg [7], Google’s cluster manager, Google

File System (GFS) [8], and Bigtable [9], a distributed storage
system. Apache Zookeeper is a popular service, offering a
simple interface to support group messaging and distributed
locking. It is used by HDFS [10], a Facebook file system,
to implement a key-value store service, server replication,
and concurrency control. Cassandra [11], a distributed data
store, relies on Zookeeper for leader election and metadata
management.

Although SMR provides configurable fault tolerance (i.e.,
by increasing the number of the replicas), it does not favor
high throughput since the execution model is restricted to
the sequential execution of commands. With servers typically
running on multi-core architectures, the parallel execution of
SMR commands has become an important research topic.

Since many application workloads are mostly composed of
independent commands [12], command dependency tracking
is a central aspect to both boost performance and keep strong
consistency in SMR. In brief, commands are independent if
they access disjoint portions of the replica’s state or only read
shared state and dependent otherwise. Dependent commands
must be processed in the same relative order at every replica to
avoid inconsistencies. Independent commands can be executed
in parallel and benefit from multi-core servers.

Indeed, exploring command independency to allow paral-
lel execution in SMR has recently received much attention
(e.g., [13], [14], [15], [16], [17]). For instance, to parallelize
the execution of independent commands, CBASE [13] adds
a deterministic scheduler (also called parallelizer) to state
machine replicas. In brief, the parallelizer at each replica
receives commands in a total order (the same order at all
replicas), examines command dependencies, and distributes
the commands among a pool of worker threads for execution
at the replica. The parallelizer handles a dependency graph to
maintain a partial order across all pending commands. When
a worker thread completes the execution of a command, it
removes the command from the graph and responds to the
client that submitted the command.

The design followed by CBASE deserves attention since it
encapsulates dependency handling at the scheduling module.
Furthermore, CBASE captures the exact conflict information
needed to maximize concurrency and assure correct execution.



Under high load (i.e., possibly hundreds of thousands of
commands per second), however, dependency tracking be-
comes itself a bottleneck as shown in this paper. To overcome
this problem, we present a novel command handling and
dependency tracking mechanism that favors high throughput
in parallel state machine replication. Our proposed tech-
nique is based on the same design principles as CBASE:
We encapsulate the complexity of command scheduling in
the scheduling module. But differently from CBASE, we
handle command batches instead of single commands at a
time and introduce structures with low computational cost
to aid in conflict detection at batch level. This leads our
scheduler to outperform other schedulers by a fairly large
margin. Since the low computational cost comes at the price
of “false positives” (i.e., the detection of a conflict between
two independent commands), we also investigate the impact
of our techniques on throughput in the presence and absence
of conflicts. Besides these contributions, we prove that our
protocol guarantees linearizable executions and experimentally
assess the performance of our scheduling technique using a
full-fledged prototype comparing it to CBASE.

The rest of the paper is organized as follows. Section II
presents the system model. Section III recalls the classical
SMR approach, and Section IV discusses parallel approaches
to SMR, focusing in CBASE [13]. Section V introduces the
efficient PSMR protocol. Section VII experimentally assesses
the performance of the proposed protocol. Section VIII surveys
related work and Section IX concludes the paper.

II. SYSTEM MODEL

We assume a distributed system composed of interconnected
processes. There is an unbounded set C = {c1, c2, ...} of client
processes and a bounded set S = {s1, s2, ..., sn} of server
processes. The system is asynchronous: there is no bound on
message delays and on relative process speeds. We assume
the crash failure model and exclude malicious and arbitrary
behavior (e.g., no Byzantine failures). A process is correct
if it does not crash or faulty otherwise. We assume f faulty
servers, out of n = 2f + 1 servers, i.e., f is the maximum
number of server failures that can be tolerated.

Processes communicate by message passing, using one-to-
one or one-to-many communication. One-to-one communica-
tion is through primitives send(m) and receive(m), where m is
a message. If a sender sends a message enough times, a correct
receiver will eventually receive the message. One-to-many
communication is based on atomic broadcast, whose main
primitives are broadcast(m) and deliver(i,m), where i refers
to the consensus instance in which message m was decided.
This definition implicitly assumes that atomic broadcast is
implemented with a sequence of consensus instances identified
by natural numbers 1, 2, 3, ... (e.g., [18], [19]).

Atomic broadcast ensures that (i) if a process broadcasts
message m and does not fail, then there is some i such
that eventually every correct process delivers (i,m); and if
a process delivers (i,m), then (ii) all correct processes deliver
(i,m), (iii) no process delivers (i,m′) for m 6= m′, and
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(iv) some process broadcast m. We implement atomic broad-
cast using Paxos [19], a consensus protocol. Paxos requires
additional synchronous assumptions but our protocols do not
explicitly need these assumptions.

III. CLASSICAL STATE MACHINE REPLICATION

State Machine Replication (SMR) renders a service fault-
tolerant by replicating the server and coordinating the exe-
cution of client commands among the replicas [1], [2]. The
service is defined by a state machine and consists of state
variables that encode the state machine’s state and a set of
commands that change the state (i.e., the input). The execution
of a command may (i) read state variables, (ii) modify state
variables, and (iii) produce a response for the command (i.e.,
the output). Commands are deterministic: the changes to the
state and response of a command are a function of the state
variables the command reads and the command itself.

SMR provides clients with the abstraction of a highly avail-
able service while hiding the existence of multiple replicas.
This last aspect is captured by linearizability, a consistency cri-
terion: a system is linearizable if there is a way to reorder the
client commands in a sequence that (i) respects the semantics
of the commands, as defined in their sequential specifications,
and (ii) respects the real-time ordering of commands across
all clients [3], [4]. In classical SMR, linearizability can be
achieved by having clients atomically broadcast commands
and replicas execute commands sequentially in the same order
(see Figure 1(a)). Since commands are deterministic, replicas
will produce the same state changes and response after the
execution of the same sequence of commands.

IV. PARALLEL STATE MACHINE REPLICATION

Classical SMR makes poor use of multi-processor ar-
chitectures since deterministic execution normally translates
into (single-processor) sequential execution of commands.



Although (multi-processor) concurrent command execution
may result in non-determinism, it has been observed that
“independent commands” (i.e., those that are neither directly
nor indirectly dependent) can be executed concurrently without
violating consistency [2]. Two commands are independent if
they either access different variables or only read variables
commonly accessed; conversely, two commands are dependent
if they access one common variable v and at least one of
the commands changes the value of v. For example, two
read commands are independent, while a read and an update
command on the same variable are dependent.

A few approaches have been suggested in the literature to
execute independent commands concurrently with the goal of
improving performance (e.g., [13], [14], [20]). In this section,
we describe CBASE, the approach proposed in [13] and the
motivation for the techniques proposed in this paper. We recall
other approaches to parallel SMR in Section VIII.

To parallelize the execution of independent commands,
CBASE adds a deterministic scheduler, also known as par-
allelizer, to each replica (see Figure 1(b)). Clients atomically
broadcast commands and the parallelizer at each replica de-
livers commands in total order, examines command depen-
dencies, and distributes them among a pool of worker threads
for execution. The parallelizer uses a dependency graph to
maintain a partial order across all pending commands, where
vertices represent commands and directed edges represent
dependencies. While dependent commands are ordered ac-
cording to their delivery order, independent commands are
not directly connected in the graph. Worker threads receive
independent commands from the parallelizer (i.e., vertices
with no incoming edges) to be concurrently executed. When
a worker thread completes the execution of a command, it
removes the command from the graph and responds to the
client that submitted the command.

Figure 2(a) depicts an illustrative dependency graph with six
commands, delivered in the order a, b, ..., f . Commands a, c
and e are the next ones to be scheduled for execution and can
execute concurrently. Commands a and b are dependent but a
was delivered first; so, a must execute before b. Intuitively,
fewer interdependencies between commands in the depen-
dency graph favor concurrency. However, the cost of adding a
new command in the dependency graph is proportional to the
number of commands in the graph that are independent of the
new command. For example, a new command g will be first
compared to commands d and f ; if g is independent of d, it
will be compared to c and b, and so on. If g is independent
of every command in the graph, it will be compared against
all vertices.

In the context of high-throughput state machine replication,
the overhead of detecting conflicts between each new com-
mand against the dependency graph turns out to significantly
hinder performance, a fact that we show experimentally in
Section VII. In Section V, we describe more efficient ways to
handle command dependencies.

V. EFFICIENT PARALLEL STATE MACHINE REPLICATION

In this section, we introduce a deterministic scheduler to
efficiently handle command dependencies and schedule inde-
pendent commands to execute concurrently. The main goal of
this scheduler is to reduce the costs on handling a dependency
graph.

A. Overall idea

In summary, our scheme combines the following strategies:
• The scheduler handles a batch of commands at a time,

instead of one command at a time. The dependency graph
stores batches of commands instead of single commands.

• Batch conflict detection uses an efficient mechanism
allowing a single comparison to evaluate conflict among
two batches.

• Worker threads execute entire batches. Commands in the
same batch are executed sequentially, in the given order.

Batched commands. Clients submit commands through a
client proxy, which groups commands from different clients
and broadcasts the commands for execution as batches. When
the proxy receives responses for all commands in a batch,
it can submit a new batch of commands. There can be any
number of client proxies, each one handling a group of clients.
The abridged dependency graph. The scheduler receives
batches of commands and builds an abridged dependency
graph, where vertices are command batches and edges are
dependencies induced by the commands in the batches. More
precisely, there is an edge from batch Bi to Bj in the graph
if Bi is received before Bj and Bj contains at least one
command that depends on a command in Bi (see Figure 2(b)
and (c)).
Batch conflict detection. Detecting conflicts between any two
batches Bi and Bj boils down to detecting a conflict between
any ci ∈ Bi and any cj ∈ Bj . In the case of no conflict this
requires O(B2) conflict detection operations, where B is the
batch size. Batch conflict detection succeeds when the first
command conflict is found. Handling batches of commands
is more efficient than processing one command at a time, but
still requires a large number of conflict detection operations.
In the following we show how to reduce this overhead.
Efficient batch conflict detection. We extend each batch of
commands with a bitmap with a digest of the variables read
and written by the commands in the batch. The idea is that
given two bitmaps, b(Bi) and b(Bj), we want to be able
to determine whether there is a command in batch Bi that
conflicts with some command in batch Bj by comparing their
bitmaps. The way bitmaps are encoded to satisfy this property
is application dependent and can be achieved in different
ways. In our prototype, we consider write commands in a
database, where each operation includes the key of the entry
written in the database. We create bitmaps by hashing the key
provided in the command; the hashed value corresponds to a
bit set in the bitmap. Checking whether two batches contain
conflicting commands boils down to a bit-wise comparison of
their bitmaps.
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Fig. 2. Three representations of a dependency graph with six commands. (a) The original dependency graph, where edge x → y means that commands x
and y are dependent and x was delivered before y. (b) The original graph grouped in batches of two commands. (c) The abridged dependency graph; notice
that commands b and c are serialized in the abridged graph.

The overhead versus concurrency tradeoff, part 1. The
abridged dependency graph establishes a tradeoff. On the one
hand, batching reduces the overhead needed to handle com-
mands (e.g., fewer system calls to deliver commands, fewer
edges to store the graph, fewer comparisons to determine de-
pendencies), which improves performance. On the other hand,
the abridged dependency graph reduces concurrency since it
may induce dependencies among independent commands. In
Figure 2(b), independent commands a and c are serialized
since commands in B1 must execute before commands in B2

because b is in B1, d is in B2 and b precedes d.
The overhead versus concurrency tradeoff, part 2. Besides
the serialization imposed by batching above discussed, the
need for fast scheduling decisions introduces a second source
of serialization: since a bitmap encodes hashes of all command
keys in the batch and bitmaps have limited size, the possibility
of distinct keys mapping to the same bit exists. This leads to
false positives in the detection of conflict between batches,
sequentializing their execution. The false positive rate depends
on the size of the bitmaps and the space of keys, as we discuss
in Section VII. False positives may harm performance but not
safety since conflicting batches obey the total order agreed
among replicas. To keep safety, the encoding scheme should
not generate false negatives (i.e., indicate no conflict when one
exists). Our hashing scheme prevents false negatives.
The stored batch dependency graph. The batch dependency
graph is stored in each replica, keeping complete dependency
information among batches. A dependency graph among pend-
ing batches is DG = (B,E) where:

• B is a set of batches.
• E ∈ B ×B is a set of edges such that iff (Bi, Bj) ∈ E

then b(Bi) ∩ b(Bj) 6= ∅, where b(Bi) is the bitmap of
Bi, and Bi was delivered before Bj . This means that Bi

has to be executed before Bj .

The execution of commands. Each worker thread ti executes
commands following their order in DG, where commands in
the same batch are handled in the order they appear in the
batch. A batch Bi can be executed if @Bj such that (Bj , Bi) ∈
E. Since a batch under execution has to be taken into account
for conflicts with new arriving batches, the worker thread does
not exclude the batch under execution from the graph, but
instead marks it as being processed such that no other thread
takes the same batch. Therefore, batches have to be extended

with the notion of status(Bi) ∈ {taken, notTaken}. Once
the thread finishes the whole batch then it is removed from
the graph along with the outgoing edges, which may lead to
further batches free for execution. As a consequence of this
procedure, the scheduler and the worker threads must access
DG in mutual exclusion.

B. Algorithm in detail

Algorithm 1 details the behavior of the scheduler and the
worker threads, respectively. The dependency graph DG (line
2) is accessed in mutual exclusion1 by the scheduler and
worker threads ti. The initialization procedure (line 6) sets the
initial values for the dependency graph, the number of threads
and the next batch to be delivered. When a batch is delivered
(line 14) it is inserted in the dependency graph. The insert
operation includes all dependencies from existing batches in
the graph (lines 18 to 20). In lines 28 to 29 and 30 to 31 two
methods for batch conflict detection are described.

A worker thread (lines 44 to 46) requests a batch to execute
using dgGetBatch(), processes it, and removes it from the
dependency graph using dgRemoveBatch(). dgGetBatch()
finds the oldest among the free batches for execution and not
taken by another thread (line 33) if there is one. In such a case,
the batch is marked as taken (line 35). dgRemoveBatch()
removes dependencies between the executed batch and other
batches (lines 39 to 41) and then removes the executed batch
(line 42).
Why it works. Correctness is discussed in detail in the
Appendix. Here we highlight the main intuition.

Replica consistency: conflicting batches are processed ac-
cording to the total order. This holds since:

i) Safety I (preserving total order for conflicting batches
in DG): all batches are inserted into the dependency graph
in the order <B they arrive (lines 14 to 15). When a batch
Bi is inserted, its conflict with all previously stored batches
is calculated and edges meaning dependencies included in E
from all the conflicting ones (lines 18 to 20). With this E
encodes a directed acyclic graph (DAG) from <B with edges
between conflicting batches.

ii) Safety II (preserving total order for conflicting batches

1For the sake of simplicity, we do not show the synchronization primitives
for protection of DG. The reader can just assume that inserting, getting the
next batch, and removing a batch are performed in mutual exclusion. Our
prototype implements mutual exclusion with monitors.



Algorithm 1
1: data structures and variables
2: DG = (B,E) {the shared dependency graph}
3: int k {the batch instance to be delivered}
4: int N {the number of worker threads}
5: boolean useBitmap {define conflict detection mechanism}

6: procedure Initialization()
7: N ← desired number of worker threads
8: useBitmap ∈ {True, False}
9: DG← (∅, ∅)

10: k ← 1
11: for id = 1..N do {for each worker thread...}
12: create worker thread tid

13: The scheduler executes as follows:
14: when deliver(k,Bk) {when deliver new batch of commands}
15: dgInsertBatch(Bk) {schedule the delivered batch and}
16: k ← k + 1 {get ready to deliver the next batch}

17: procedure dgInsertBatch(Bi)
18: ∀Bj ∈ B {any batch in the graph that}
19: if conflict(Bi, Bj) then {... conflicts with incoming one}
20: E ← E ∪ {(Bj , Bi)} {has to be processed before}
21: status(Bi)← notTaken {no one is processing this batch}
22: B ← B ∪ {Bi} {insert batch in the graph}

23: procedure boolean : conflict(Bi, Bj)
24: if useBitmap then {choose conflict mechanism}
25: return bitmapConflict(Bi, Bj)
26: else
27: return cmmdKeyConflict(Bi, Bj)

28: procedure boolean : bitmapConflict(Bi, Bj)
29: return b(Bi) ∩ b(Bj) 6= ∅

30: procedure boolean : cmmdKeyConflict(Bi, Bj)
31: return ∃ ci ∈ Bi, cj ∈ Bj such that key(ci) = key(cj)

{searches two conflicting commands in the batches}

32: procedure batch : dgGetBatch()
33: let freeBatches = {Bi ∈ B|∀Bj ∈ B, (Bj , Bi) 6∈ E
34: ∧status(Bi) = notTaken} {all free batches not yet taken}
35: let Bk ∈freeBatches|∀Bl ∈ B, k < l {get the oldest free batch}
36: status(Bk)← taken {no other thread take it}
37: returnBk

38: procedure dgRemoveBatch(Bi)
39: ∀Bj ∈ B {any batch in the graph that}
40: if (Bi, Bj) ∈ E then {... depends on the one being removed}
41: E ← E \ {(Bi, Bj)} {does not depend anymore}
42: B ← B \ {Bi} {remove processed batch from graph}

43: Each worker thread tid executes as follows:
44: while Bi ← dgGetBatch() {while there are commands to execute}
45: execute commands in Bi in their order
46: dgRemoveBatch(Bi)

when taking a batch from DG): a batch is only taken to be
processed when it has no incoming dependency edges in E
(lines 33 to 35), and it is free to execute. Since each edge in
E denotes a dependency, no batch is taken disrespecting the
total order of conflicting batches.

iii) Non-deadlock: the first batch does not depend on any
other batch and is free to execute. An executed batch Bi is
removed and all edges in E from Bi as well (lines 39 to 42).
Since a batch only depends on preceding ones, then a Bj ,

Bi <B Bj will necessarily have its last incoming dependency
edge removed with the removal of Bi and will be free to
execute: the graph has always a lowest element.

Consistency across replicas. This is granted since replicas
deliver the same total order (<B), implement the same al-
gorithm, and this algorithm preserves the total order of con-
flicting batches irrespective of the relative speed of different
replicas, which is argued as follows. Replicas may progress at
different speeds and thus may have different sets of pending
batches in their dependency graphs. When a batch Bj is
delivered according to <B in two replicas Ra and Rb, Bi

may belong to pending batches in Ra but not in Rb. In such
case, Rb processes them in total order, while Ra will process
in total order in case they conflict, and concurrently otherwise.
In any case the total order of conflicting batches is preserved.

VI. IMPLEMENTATION

In order to evaluate our scheduling technique, we devel-
oped a key-value store service using CBASE, and the same
service using our efficient version of CBASE scheduling,
which includes batches and bitmaps. The service implements
commands to create, read, update and remove keys from an
in-memory database. Atomic broadcast is provided by the
primitives broadcast and deliver implemented in Ring Paxos
[21], a high-throughput atomic broadcast protocol.2

Client commands are forwarded to a client proxy, which is
responsible for batching those commands in a single request.
To alleviate the burden on the parallelizer, the bitmaps for
a batch are computed by the client proxy. Client proxies
broadcast a request to the replicas and wait for the first
reply from a replica for every command in the batch before
broadcasting another batch.

Upon receipt of a batch, a service replica proceeds as in
Algorithm 1. To represent the original CBASE, the prototype
is configured with batches of size 1, i.e., every batch contains
a single command. Furthermore, two approaches are available
to determine dependencies. The first one (lines 30 to 31)
compares each command key in the incoming batch against
keys of commands in the batches stored in the dependency
graph. The second approach (lines 30 to 31) compares the
bitmap of the incoming batch against bitmaps of batches stored
in the dependency graph.

A. Graph implementation

Here we describe the graph implementation approach used.
Each batch is a node of the graph. We say that a node ni

depends of another node nj if their respective batches conflict
and Bi is delivered after Bj . The dependency graph among
nodes is implemented as an ordered list of nodes nodeList.
Each node is inserted to nodeList as the batch is delivered
according to <B , the total delivery order of batches. Each
node is a tuple 〈batch, deps, bDeps, status〉, where:

• batch ∈ B;

2We used the URingPaxos library (https://github.com/sambenz/URingPaxos).



• deps is a set of nodes that depend on this node, it
represents the edges E of the dependency graph;

• bDeps (backward dependency) is a set of nodes this node
depends of, used for implementation purposes;

• status ∈ {taken, notTaken};
This graph has as atomic operations dgInsertBatch(Bi),

dgGetBatch() and dgRemoveBatch(Bi) as described in Algo-
rithm 1. Edges E from a node are represented by the node’s
deps. bDeps is used to speed the process of removing edges
from deps of nodes that depend on the one being removed,
further freeing nodes. Status is used as in Algorithm 1.

B. Bitmap implementation

Bitmaps are used to encode the keys of every command
batched in a request. A hash function maps the keys into
bitmap positions. Figure 3 illustrates a batch B and its re-
spective bitmap representation. Batch B contains 2 commands
and commands’ keys are mapped into a bitmap of size m,
b(B). The second and the last but one b(B) bits are set to 1,
indicating that keys x and y belong to this bitmap.

The number of bits in a bitmap does not necessarily repre-
sents the number n of commands encoded in that batch. Since
any two commands may access the same key, the same bit can
map more than one command key. In addition, depending on
the size of n and m, there is a certain probability that the hash
function maps two different keys to the same bitmap position.
This probability increases as n increases and m decreases.
While this approach is subject to false positives (i.e., it may
detect a conflict when none exists), it is not prone to false
negatives (i.e., it does not miss real conflicts).

The bitmap structure is a Bloom filter with a single hash
function for mapping keys into a bit array. While general
purpose Bloom filters can be set with more than one hash
function, for the dependency analysis proposed in this paper,
the number of hash functions is limited to one. This restriction
is necessary because our approach does not query Bloom filters
for a given element. Instead, a conflict is detected when a non-
empty intersection between the encoding information by a pair
of Bloom filters is found, i.e., the same position set to 1 in both
bit arrays. (Note that the intersection of bit arrays created with
more than one hash function would increase the false positive
rate.)

VII. PERFORMANCE EVALUATION

In this section, we explain our assessment goals and method-
ology, describe the experiment environment, and present the
results of our performance study.

A. Goals and methodology

The scheduling technique introduced in this paper aims to
speed up SMR execution with minimal overhead. We wish
to quantify the effects of enhancing CBASE with batches
and bitmaps, and compare to the traditional CBASE on the
following aspects:
• speed-up achieved with growing number of worker

threads and increasing batch sizes;

x      y
h(x)

1 1m
 .. 

h h(y)B=[put(x,10), get(y)]

b(B) =
Fig. 3. Resulting bitmap for a batch of commands. The bitmap size is m
and it encodes 2 keys.

• the impact of the scheduling overhead;
• the impact of false positives introduced by the depen-

dency analysis based on bitmaps;
• the impact of conflicts in the overall throughput.
To investigate the first aspect, since we are interested in

the effect of concurrent command execution in SMR, we
provoke the maximum concurrency possible using conflict-free
workloads and evaluate the throughput achieved with varying
number of worker threads and batch size.

To investigate the second aspect, we vary the computational
demand of request processing. Light request processing would
show more clearly the impact of scheduling overhead while
heavy request processing would dilute this overhead. We
induce heavy request processing by increasing the batch size.

To investigate the third aspect, we vary both batch and
bitmap size and measure the false positive rate for a mix of
scenarios.

Finally, to investigate the fourth aspect, we vary the conflict
rate and observe how the increasing of dependent batches
in the graph impact in the overall throughput. The resulting
experiments combine a coverage of these variables.

B. Environment and configuration

All experiments were executed on a cluster with two types
of nodes: HP SE1102 nodes equipped with two quad-core Intel
Xeon L5420 processors running at 2.5 GHz and 8 GB of main
memory; and Dell PowerEdge R815 nodes equipped with four
16-core AMD Opteron 6366HE processors running at 1,8 GHz
and 128 GB of main memory. The HP nodes were connected to
an HP ProCurve switch 2920–48G gigabit network switch, and
the Dell nodes were connected to another, identical network
switch. The switches were interconnected by a 20 Gbps link.
All nodes ran CentOS Linux 6.5 and had the Oracle Java
SE Runtime Environment 8. Paxos’ proposer, acceptors, and
clients were deployed on HP nodes, while service replicas
were deployed on Dell nodes.

C. Speed-up analysis

In this section we evaluate the scalability of the proposed
approach with the increasing in the number of worker threads.
We defined workloads with different batch sizes, varying
from 1, 100, and 200 commands per batch. Furthermore, to
concentrate on the impact caused by the scheduling overhead,
in this experiment, we exercise contention-free workloads (i.e.,
without conflicts).



Figure 4 depicts the throughput of our key-value store
prototype (given in kilo commands per second) for different
CBASE configurations. Test scenarios vary according to the
number of worker threads, batch size, and dependency analysis
strategy (by comparing every key in a batch, or comparing the
batch bitmaps). The traditional CBASE is represented by the
first group of clustered bars (CBASE, batch size = 1). The
maximum throughput observed is around 33000 commands
per second. It is also observed that service does not scale
well, i.e., the throughput is practically the same regardless
of the number of worker threads (see 1, 2, 4, 8, and 16
threads’ bars). Therefore, when the cost for processing a single
command is very low, the scheduler becomes the bottleneck
in the traditional CBASE.
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Fig. 4. Threads scalability for contention-free workloads.

In order to reduce the scheduling overhead impact, worker
threads should spend more time processing commands or the
scheduler technique should be optimized. Our approach covers
these two aspects. While batching makes the task of executing
commands heavier, the use of bitmaps in the dependency
analysis reduces the number of comparisons needed to detect
dependencies.

In Figure 4, the maximum throughput reaches 53000 com-
mands/s when commands are grouped in batches of size 100
(see “CBASE, batch size = 100” bars). This represents an
increase of 1.6 times on the throughput when compared to the
traditional CBASE. However, when commands are grouped in
batches of size 200 (see “CBASE, batch size = 200” bars), the
throughput reaches 27600 commands/s, approximately 0.84
times the traditional throughput. The decrease on performance
with batches of size 200 is explained by the large number of
comparisons per dependency checking.

Grouping commands into batches has demonstrated limited
scalability when dependencies are calculated key-by-key (see
Figure 4, “CBASE, batch size = 100”, and “CBASE, batch
size = 200”). This lack of scalability is explained by the
graph contention caused by a large number of comparisons
performed during dependency analysis. When bitmaps are
used to determine dependencies among batches, the syn-
chronization cost caused by the scheduler is dramatically
reduced. Furthermore, incoming batches become available for

threads processing more quickly. Figure 4 shows a maximum
throughput of 507000 commands/s for scenario “CBASE,
batch size = 100, using bitmap”, and 854000 commands/s for
“CBASE, batch size = 200, using bitmap”, i.e., throughput
is 15.4 and 25.9 times higher than the traditional CBASE. It
is also observed a better scalability when bitmaps are used,
specially for scenarios with larger batches (“CBASE, batch
size = 200, using bitmap”).

D. Conflict rate analysis

As presented in Section V, the keys of all the commands
belonging to a batch are encoded in a single bitmap associated
to that batch. While comparing two bitmaps, the coincidence
of at least one common bitmap position set as 1 in both
bitmaps configures a conflict among batches (i.e., both bitmaps
encoded the same command key). Notice that different keys
may coincidentally be mapped to the same position, thus false
positives are possible in our approach.

We evaluate the conflict rate produced by our approach
by means of simulation. Our simulator represents incoming
requests as single batches, and the dependency graph as a list
of batches (each batch in the list corresponds to a vertex in
the graph). The average graph size is given by the list size.
To determine conflicts, our simulator compares an incoming
batch against the list of batches (i.e., a representation of the
dependency graph). If at least one common bitmap position
is set as 1 in both bitmaps, then a conflict is computed. After
checking conflicts involving the incoming batch and the list
of batches, the incoming batch is added to the list of bitmaps
and the oldest batch in the list is removed.

In our experiments we configure the bitmap size (in number
of bits), the batch size (i.e., the number of keys encoded in
a batch), the average graph size, the number of distinct keys,
and the number of iterations. For all experiments, we adopted
a large number of distinct keys (109), so the probability of
two identical keys are encoded in a pair of bitmaps under
comparison is very low. This means that conflicts detected in
the simulation are predominantly caused by false positives. We
also fixed the number of iterations to 106 for all executions.
We choose values for batch size and average graph in accor-
dance with the experiments performed in Section VII-C. From
previous experiments, batch sizes were set to 100 and 200, so
we adopt these values in our simulation. The average graph
size computed throughout those scenarios execution were: 1
for “CBASE, batch size=1”, 1 for “CBASE, batch size=100”, 1
for “CBASE, batch size=200”, 5 for “CBASE, batch size=100,
using bitmap”, and 7 for “CBASE, batch size=200, using
bitmap”. Thus, we set up the average graph size to 1, 5, and
7 in our simulations.

Table I shows how the conflict rate varies with the bitmap
size, batch size, and the average graph size. The use of
larger batches causes more conflicts since more commands are
encoded and leading to a higher probability of a single conflict
occurrence. The use of larger bitmaps reduces the occurrence
of false positive, what can be observed by the reduction on the
conflict rate as the bitmap size increases. For example, when



the bitmap size is equal to 1 Mbit, “CBASE, batch size=100”
has average graph size of 5 batches and according to Table I
around 4.75% conflict, while “CBASE, batch size=200” has
average graph size of 7 batches and around 23.95% conflict.

TABLE I
CONFLICT RATE

Bitmap
size (bits)

Average
graph size

Conflict rate (batch
size = 100)

Conflict rate (batch
size = 200)

102400 1 9.29% 32.37%
102400 5 38.69% 85.85%
102400 7 49.50% 93.52%
1024000 1 0.96% 3.85%
1024000 5 4.75% 17.78%
1024000 7 6.61% 23.95%

E. Speed-up analysis for conflict-prone workloads

Once we surveyed the performance of our prototype for
some scenarios of interest in context-free workloads, we
introduce conflicts in our analysis. According to Moraru et
al. [12], dependency probabilities between 0% and 2% are
the most realistic. For instance, in Chubby, for traces with
10 minutes of observation, fewer than 1% of all commands
could possibly generate conflicts [5]. In Google’s advertising
back-end, F1, fewer than 0.3% of all operations may generate
conflicts [22]. Although the literature suggests a very low
conflict rate, our dependency analysis strategy introduces false
conflicts. For this reason, we re-run previous scenarios with
conflict rates compatible to those discussed in Section VII-D.

Figure 5 shows the maximum throughput for scenarios
“CBASE, batch size=100, using bitmap”, and “CBASE, batch
size=200, using bitmap” in the conflict-free, 10% of conflicts,
and 20% of conflicts workloads. We choose 10% and 20% of
conflicts because these rates are similar to those experienced
when bitmap size is 1 Mbit. As expected, as the conflict rate
increases, the lower is the throughput. Performance depends on
the amount of concurrency allowed by the workload (related
to the percentage of conflicts) and the overhead to synchronize
threads. With a low number of worker threads (e.g., 1, 2, and 4)
and 20% of conflicts, there are enough requests to keep threads
busy. As the number of threads increases, the synchronization
overhead outweighs the work that there is for these threads to
execute. So, performance decreases slightly.

It is worth noting that even with the increase on the
number of conflicts, our technique outperforms CBASE by
a fairly large margin. For instance, with 20% of conflicts,
the maximum throughput for “CBASE, batch size=200, using
bitmap” is around 515000 commands/s, i.e., 15 times higher
than CBASE throughput. Thus, although bitmaps detect false
positives while calculating dependencies, the time taken by the
dependency analysis is significantly reduced.

VIII. RELATED WORK

In this section, we review existing approaches to parallel
SMR. To the best of our knowledge, CBASE [13] was the
first proposal for parallel execution of SMR requests. By
using an atomic broadcast protocol, all requests are delivered
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Fig. 5. Impact of conflicts on overall throughput.

in the same order to every replica, exactly as in the classic
SMR. In CBASE, however, replicas are augmented with a
deterministic scheduler, as known as parallelizer. Based on
application semantics, the parallelizer serializes the execution
of dependent commands according to the delivery order and
dispatches independent commands to be processed in parallel
by a pool of worker threads. The consistency is provided by
each individual replica, once requests are delivered in the same
order and parallelizer adopts the same scheduling policies to
establish a partial order for requests processing.

In Eve [14], authors propose a speculative strategy with
the aim of avoiding the scheduling overhead. Eve replicas
first execute commands and then verify the equality of their
states through a verification stage. Before execution, a primary
replica groups client commands into batches and transmits the
batched commands to all replicas. Then, replicas speculatively
execute batched commands in parallel. After the execution of
a batch, the verification stage checks the validity of replica’s
state, as defined by the common state reached by a majority. If
too many replicas diverge, replicas roll back to the last verified
state and re-execute the commands sequentially. To avoid
costly rollback procedures, the frequency in which replicas
need to reconcile must be reduced. Eve minimizes divergence
through a mixer stage that applies application-specific criteria
to produce groups of requests that are unlikely to interfere.

In Rex [23], a single server receives requests and processes
them in parallel. While executing, the server logs a trace of
dependencies among requests based on the shared variables
locked by each request. The server periodically proposes the
trace for agreement to the pool of replicas. The other replicas
receive the traces and replay the execution respecting the
partial order of commands. The Execute-agree-follow model
proposed by Rex resembles the passive replication model.

In [16], authors present Storyboard, an approach that sup-
ports deterministic execution in multi-threading environments.
Their strategy enhances SMR with a forecasting mechanism
that, based on application-specific knowledge, predicts the
same ordered sequence of locks across replicas. While fore-
casts are correct, commands can be executed in parallel.
If the forecast made by the predictor does not match the



execution path of a command, then the replica have to establish
a deterministic execution order in cooperation with other
replicas. In this case, Storyboard blocks the execution of the
command and repredicts the command’s execution path. The
repredict command runs a consensus protocol to determine a
consistent point in the execution order across all replicas. The
reprediction will contain at least the lock which the command
currently seeks to acquire, but possibly also further locks. All
replicas will proceed according to the new forecast.

CRANE [17] is a parallel SMR system that transpar-
ently replicates general multi-threaded programs. Within each
replica, CRANE intercepts POSIX socket and the Pthreads
synchronization interface and implement deterministic ver-
sions of such synchronizing operations. To ensure total order
delivery of synchronization commands across replicas, for
each incoming socket call (e.g., accept() or recv()),
CRANE runs a distributed consensus protocol, so that correct
replicas see exactly the same sequence of calls. CRANE sched-
ules synchronization commands using deterministic multi-
threading (DMT) [24], [25]. This technique maintains a logical
time that advances deterministically on each thread’s synchro-
nization. The central idea of CRANE is to combine the input
determinism of Paxos and the execution determinism of DMT.

In [15], authors propose a parallel SMR approach that
uses multiple multicast groups to partially order commands
across replicas, where each group leads to a different stream
of commands delivered at each replica. In this approach
the independent commands are not delivered by a single
component and then scheduled for parallel execution. Instead,
independent commands can be directly delivered by multiple
worker threads by mapping command streams to multiple
sockets. Therefore, the overhead associated with a parallelizer
mechanism is minimized by this approach.

Our scheduler follows the same principle design of the par-
allelizer proposed in [13] and the mixer adopted in [14]. Com-
pared to these works, our scheduler reduces the dependency
graph contention, achieving higher throughput. Specially when
compared to [14], our approach avoids the need of a verifica-
tion and roll-back phases, which can be very costly (depending
on the workload). Rex [23] also achieves very high throughput.
However, Rex implements a passive replication strategy, where
the total order delivery is no longer required. Thus, in case of
primary failure, it suffers from high reconfiguration costs, and
requests may be delayed during reconfiguration. In [16], [15]
authors propose different architectural styles to enforce parallel
execution of commands. For instance, although [15] may
significantly improve the scalability of the delivery protocol,
system designers should be able to partition SMR application
to enjoy full benefits of the technique. Our approach offers a
simple design, since it encapsulates the dependency handling
complexity at a single scheduling module, keeping untouched
other modules. In terms of design simplicity, CRANE [17] is
possibly the best choice. Its drawback is that multithreaded
applications with intense synchronization incur higher over-
head due to the DMT approach. In our approach whenever the
number of non-conflicting requests stored in the dependency

graph is close to the number of worker threads, minor impact
on throughput is observed.

IX. CONCLUSION

Current advances in parallel SMR allow independent com-
mands to be executed concurrently in a replica. To keep
replicas consistent, each replica has to carefully handle and
respect dependencies among commands. This is a non-trivial
task since it requires dependency detection on a possibly
high volume of commands. As shown in this paper, for high
command rates of light commands, existent schedulers for
parallel SMR can become a bottleneck. In this paper, we have
proposed mechanisms to efficiently represent and calculate
dependency among commands, complemented by an efficient
scheduling mechanism. We proved that our parallel SMR lends
linearizable executions and experimentally assess the perfor-
mance of our scheduling technique. Results demonstrated that
the throughput achieved by our approach is 15 times higher
than that observed by previous schedulers.
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APPENDIX

Definition 1 (Batch, Batch Sequence). A batch is a sequence
of commands. A batch sequence is a pair (B,<B) where B is
a set of batches and <B⊆ B ×B is an irreflexive total order
(this total order represents the atomic broadcast functionality).

Definition 2 (Conflict, Batch Sequence Dependency Relation).
Two commands conflict if any readset or writeset of one
command intersects the writeset of the other. Given a batch
sequence and the conflict relation #C ⊆ C × C among
commands, the derived batch sequence conflict relation #B

is obtained by lifting the conflicts over C to conflicts between
batches involving those commands. The batch sequence de-
pendency relation ≺B is the transitive closure of <B ∩#B ,
respecting the total order for conflicting batches.

Definition 3 (Execution). An execution of ≺B is any total
order that is compatible with ≺B . By construction ≺B is an
irreflexive partial order since ≺B⊆<B , <B is irreflexive and
antisymmetric.

Definition 4 (Replica’s Dependency Graph). Given a batch
sequence (B,<B) and its conflict relation #B , a replica R
builds a dependency graph DG = (Bdg, E), such that:
i) starting with DG = (∅, ∅) (line 9), each and all elements

of B are taken for inclusion in DG following the order
<B (see lines 14 to 15);

ii) while including a batch bi in DG(Bdg, E), bi is included in
Bdg and is checked for conflict with every other bj ∈ Bdg

such that (bj , bi) is included in E in case of conflict (see
dgInsertBatch()).

Proposition 1. The dependency graph DG = (Bdg, E) con-
structed for a batch sequence (B,<B) and a batch sequence
conflict relation #B is a directed acyclic graph (DAG). Proof:
Due to Definition 4(i), Bdg has all batches previous to bi (a
batch being included in DG) according to <B , and eventually
Bdg will have all batches from B. Due to Definition 4(ii)
∀bi, bj ∈ B, (bi, bj) ∈ E iff (bi, bj) ∈ <B ∧ (bi, bj) ∈ #B , or
in other words iff (bi, bj) ∈ (<B∩ #B), the transitive closure
of which is ≺B . Since ≺B is a partial order, DG is a DAG.

Definition 5 (Replica’s Multithreaded Execution). Given a
dependency graph DG = (B,E) a replica R has a finite set
of working threads that execute batches in B, such that:
i) DG is manipulated in mutual exclusion;
ii) a batch is chosen for execution according to dgGetBatch();
iii) after processing a batch, a thread removes it from DG

using dgRemoveBatch(). This ensures that incoming
batches are considered for conflict with batches both
pending and under execution.

Proposition 2. A replica’s execution is compatible with ≺B .
Proof: Since DG is a DAG compatible with ≺B , item (ii)
above ensures that any replica execution is compatible with
≺B : the choice of next batch is always the lowest element
w.r.t. ≺B , a node of DG without incoming edges. If there are
several such nodes, the lowest w.r.t. <B is chosen.

Proposition 3. Non-deadlock: there is always a free batch to
execute in DG. Proof: Supposing DG is not empty and there
are no taken batches (batches in execution by worker threads),
then there exists at least one lowest element that does not de-
pend on any other batch, i.e., ∃bi ∈ B, ∀bj ∈ B (bj , bi) 6∈ E.
This follows from E ⊆≺B , ≺B is a partial order and B is
finite.
Moreover, when a batch bi is excluded form DG, then all
dependencies from bi are excluded. Let bj be the next batch
according to <B , then either (a) bi and bj where independent
or (b) the dependency (bi, bj) ∈ E was excluded (see dgRe-
moveBatch()). In any case, since bj is now the lowest element
and there are no cycles, bj does not depend on any batch and
is free to execute, preserving this property.

Proposition 4. No starvation of batches. Proof: Since a batch
b has an order in <B and there is no deadlock, b will eventually
be processed.

Proposition 5. Replicas are consistent. Two replicas are
consistent if, having processed a batch sequence, they converge
to identical states. Proof: Follows from Proposition 2. Both
replica runs are executions compatible with ≺B , respecting
total order of dependent batches.

Proposition 6. A replica’s execution is consistent with the
linearizability criterion. Proof: linearizability states that an
execution respects the real-time ordering of commands across
all clients and the semantics of the commands as defined in
their sequential specifications. Commands ci and cj do not
overlap in time if one command, say ci is submitted by a
client and responded by the service before cj is submitted by
another client. Linearizability holds since: (a) non overlapping
commands are naturally submitted and responded sequentially;
(b) overlapping in time, dependent commands are executed at
all replicas in a same sequential order fixed by the ordering
protocol; (c) overlapping in time, independent commands
can be executed in different moments in different replicas,
but preserve the semantics of their sequential specifications
since they are independent on the concurrent batches being
processed.


