
Shrinking Logs by Safely Discarding Commands

Luiz Gustavo C. Xavier1, Fernando Luı́s Dotti2,
Cristina Meinhardt1, Odorico M. Mendizabal1

1Departamento de Informática e Estatı́stica
Universidade Federal de Santa Catarina (UFSC)

2Escola Politécnica
Pontı́ficia Universidade Católica do Rio Grande do Sul (PUCRS)

l.gustavo.x@posgrad.ufsc.br, fernando.dotti@pucrs.br,

{cristina.meinhardt, odorico.mendizabal}@ufsc.br

Abstract. Logs are crucial to the development of dependable distributed appli-
cations. By logging entries on a sequential global log, systems can synchro-
nize updates over distributed replicas and provide a consistent state recovery
in the presence of faults. However, logs account for a significant overhead on
fault-tolerant applications’ performance, and many studies present alternatives
to alleviate servers from such costs. This paper proposes an approach to re-
duce log footprint by safely and efficiently discarding entries from logs. The
expected benefits are twofold: minimize durability costs and speed up recovery.
Besides shrinking logging information, the proposed technique splits the log
into several files and incorporates strategies to reduce logging overhead, such
as batching and parallel I/O. The proposed approach was compared to a stan-
dard logging scheme using realistic workloads. Results demonstrate that our
logging approach is capable to generate compressed logs and reduce recovery
time, imposing half the throughput overhead of a standard logging scheme.

1. Introduction
Logs are nested in the hearth of many distributed applications. By providing a single
sequence of records ordered by time without the need of a physical clock, and ensuring
durability, logging mechanisms play a central role in the developing of database man-
agement systems and key-value stores [Mohan et al. 1992], replication and coordination
protocols [Lamport 1978, Junqueira et al. 2011, Ongaro and Ousterhout 2014], and data
integration [Kreps et al. 2011, Liu et al. 2014, Assunção et al. 2015]. Database manage-
ment systems entrust logs the role to synchronize updates over various data structures and
indexes, allowing a safe state recovery to replicas [Kreps 2014]. Logs can also be used
as a consistency mechanism to order state updates to replicated services, as is the case
of replication protocols, such as State Machine Replication (SMR) [Lamport 1978] and
primary backup [Budhiraja et al. 1993].

Logs are still the de facto technique to provide fault tolerance on a distributed
system [Zhang et al. 2015]. On a standard logging approach, every command is persisted
to stable storage. Pessimistic logging schemes ensure a greater consistency level by log-
ging commands before executing them. Especially when considering applications with
strict consistency requirements, this scheme must be implemented to guarantee safety

in the presence of catastrophic failures, such as power outages or simultaneous failures.
Although synchronous writing achieves a recovery point objective of zero lost data, I/O
costs may represent a major overhead on command execution [Yao et al. 2016].

Besides adding extra costs during the normal operation, logging directly affects
recovery time. Since traditional logging mechanisms typically do not benefit from op-
erations semantic, it is unknown to the recovery protocol whether a command result is
later overwritten or its execution does not modify the application’s state. Thus, the entire
sequence of logged commands must be replayed during recovery to allow a consistent
state recovery. Principally for high throughput systems, the processing of large log files
during recovery incurs significant downtime periods. A fast recovery procedure is al-
ways wanted to keep up with availability levels, a growing concern in today’s online sys-
tems [Chaczko et al. 2011], where any downtime period can result in substantial losses
[Clay 2013]. Even considering general practices to provide durability while leveraging
log costs during recovery, such as checkpointing, logs are still needed and account for
non-negligible performance overhead [Bessani et al. 2013, Mendizabal et al. 2016].

In this paper, we present an approach to minimize log management costs on log-
based protocols. By safely discarding unnecessary log entries, the proposed logging ap-
proach reduces the amount of recorded information necessary to reach a consistent state.
It means that recovering from the reduced log leads to the same result as replaying an
entire log sequence, but at a lower cost. A shorter command sequence affects both trans-
ferring and installation of logs, and can directly reduce the application’s downtime period,
thus increasing availability levels. Although shrinking the log at runtime might seem in-
efficient at first glance, the proposed logging enables concurrency between commands
execution and persistence, demonstrating a comparable performance to the traditional ap-
proach in systems equipped with a single storage device. As the proposed approach favors
parallel I/O, it outperforms traditional logging when configured with multiple storage de-
vices. We implemented a key-value store prototype and compared our approach with a
standard logging approach. Test scenarios reproduce realistic workload patterns from the
consolidated Yahoo! Cloud Serving Benchmark (YCSB) [Cooper et al. 2010].

The remainder of this paper is organized as follows. Section 2 presents the system
model and assumptions. Section 3 briefly introduces the standard log-based protocols.
Section 4 presents our approach, implementation aspects, and recovery implications. Sec-
tion 5 describes our experimentation environment, the methodology, and the evaluation
results. Section 6 presents some related work, and Section 7 concludes this paper.

2. System model and assumptions
We consider a distributed system composed of interconnected processes, with a limited
number n of replicas defined by the set R = {r1, r2, ..., rn} and an unbounded set C =
{c1, c2, ...} of client processes. The system is asynchronous, i.e., there is no upper bound
to the processes speed and message delays. To ensure liveness, we assume the existence
of synchronous intervals during which messages sent between processes are received and
processed with a bounded delay.

We assume the crash-recovery failure model and exclude malicious or arbitrary
behavior (e.g., no Byzantine failures). A process may fail by crash and subsequently
recover, although they are not obligated to recover once they failed. Failures may be cor-

related, leading to catastrophic failures, where up to n simultaneous failures may happen.
Power outages on replicas site or deterministic bugs in the service code exemplify this
behavior.

Replicas are equipped with volatile memory and stable storage. Upon a crash, a
process loses the content of its volatile memory, but the content of its stable storage is
not affected. Stable storage data cannot be corrupted or lost. Therefore, state information
saved on this device during failure-free execution can be used for recovery.

3. Log-based protocols
Logs can be seen as an append-only sequence of records ordered by time. Log records
may have different meanings depending on the application. For the sake of simplicity, we
assume each record stores an application command. Updating commands are represented
by the command w(k, v) and reading commands by r(k), where w writes the variable
given by the key k with a value v, and r reads the value associated with the key k. A logger
process stores records in the log following the order they arrive. Each entry appended to
the log is assigned to a unique and sequential entry number.

Figure 1 illustrates a standard log-based protocol, where each command is logged
to stable storage before the command reply is sent to clients. The upper line E represents
the execution of application’s commands by an executor thread, whereas S illustrates the
store task. The received commands (w(x, 14), r(x), etc.) are forwarded to S, where they
are written to the log in the order they arrive, given by the indexes 0, 1, .., and so forth. In
practical terms, the store task can be exemplified by a synchronous writing system call.
Thus, records log 0, log 1; .., are persisted by successive writings to the log file.

0 1 2 ...

log 0

w(y,20)r(x)w(x,14)

E

S

log 1 log 2

Figure 1. Standard logging approach (SL). Commands are logged to persistent
storage before any reply is sent to clients.

In the literature, most log-based protocol implementations follow a similar recov-
ery approach [Elnozahy et al. 2002]. The first step is to retrieve the latest application’s
checkpoint from local storage or a replica further ahead in the processing of commands.
By installing the checkpointing snapshot, the replica is informed of the latest index (i.e.,
the log entry) λ reflected on the installed state. Then, it determines the lower-bound index
i = λ + 1 for the remaining interval of commands to be recovered. If no checkpoint is
received, i is set to 0. Finally, the replica retrieves a log suffix starting in i from its local
storage or another replica.

4. Reducing log state
The key idea for shrinking the log size is to consciously avoid the logging of commands
unnecessary to reach a consistent state. The omission of some commands transferred to

the recovering replicas could not modify the final state after recovery. For logging pur-
poses, incoming commands are seen as batches of commands, and the logging reduction
is performed per batch. The reduction procedure discards all unnecessary commands in
the batch, and only the necessary ones are recorded to the log.

To demonstrate the potential of safely discarding unnecessary log entries, we
adopted a key-value store data model advocating its representativeness for various ap-
plications. Our approach relies on the application’s command semantics to reduce log
footprint. Applications execute single-variable read, r(k), and write, w(k, v), commands
over an address space. Read operations and writes to values that are subsequently over-
written are examples of unnecessary log entries. Only the last write command per batch
needs to be logged to reach a consistent state.

Figure 2 illustrates the reduction and persistence of commands into the log. The
sequence of incoming commands is evaluated in the form of successive virtual batches,
given by batch 0, batch 1, and batch n. Each batch is reduced so that only the necessary
commands are kept. Solid lines represent the projection of these commands to the per-
sistent log. For instance, only commands with indexes 1, 4, and 5 are stored in the log.
Differently from the traditional logging, in this approach, the log is split into several files,
one per batch. These files may contain 0 to m commands, where m is the batch size. As
shown in the figure, one command is stored in the first log file, two commands in the sec-
ond file, and the last file is empty because only unnecessary commands are present in the
nth batch. Notice that the elimination of write operations to outdated values is possible
only for successive writes in the same batch. To illustrate this, let us assume the com-
mands c1 : w(x, 10) and c2 : w(x, 20) are associated with indexes 0 and 1 in the figure.
In this case, only c2 is recorded in the log. A different case will occur if c1 and c2 are
associated with indexes 1 and 4. Although c1 and c2 update the same variable, both must
be appended to the log.

...

batch 0 batch 1 batch n

...0 1 2 3 4 5

Log files

log[0,3) log[3,6) log[k,k+3)

Figure 2. Reduction of batch of commands and split log.

4.1. Design aspects

The reduction procedure delimits the commands in a batch by establishing a batch size
of m commands. That means the system does not need to pack commands in a batch ex-
plicitly. After m commands have been reduced, the logging procedure stores the resulting
commands in the log and starts reducing the next m commands.

During the reduction of a batch, a hash table is used to keep information of which
keys are updated by the commands. The table indexes serialized commands into their
corresponding keys. Thus, a write operation issued to an already populated key over-
writes the current command associated with that key. The proposed strategy separates the

reduction procedure from the logging in stable storage. Thus, while a set of commands
resulting from a reduction is being persisted, other batches can be reduced in parallel.
When multiple storage devices are available, writings to devices can also occur in paral-
lel, boosting I/O throughput.

The concurrent execution model between log reduction and log persistence adopts
multiple reduction tables and log writers. When the reduction procedure is filling one
table, other tables’ content can be flushed to the persistent storage by log writers. Tables
are accessed in mutual exclusion by the reduction procedure and log writers. A mutex
enforces the synchronization over a cursor variable. The cursor indicates which table is
being used by the reduction procedure. Besides, each table has a lock to ensure that only
one log writer is persisting the table data to the log. If the reduction procedure tries to
acquire the lock to perform a batch reduction, it will wait until the table’s contents are
fully flushed into stable storage.

Table swapping and log persistence are ruled by command intervals according to
the batch size. Right after reducing the last batch command over a certain table tn, the
reduction procedure acquires the mutex, signals a log writer to record tn data in the log,
updates the cursor to the next table following a circular order, and releases the mutex.
The rapid cursor update allows new batch operations to be immediately applied over the
next table. The log writer writes all serialized values from tn to the stable storage with its
corresponding [first, last] interval as metadata. Finally, it resets tn and unlocks it.

Figure 3 depicts an execution trace with two hash tables, 2 log writers, and a batch
size of 3 commands. As shown, the reduction procedure only modifies the current table
if the incoming command is an update. Case the command updates a key for the first
time, a new entry in the table is created; otherwise, the previous command is overwritten.
After finishing the batch processing (i.e., after executing commands 0 to 2), the table
contains only the most recent write commands associated with x and y. The logging
procedure then signals the log writer associated with table 0 and updates the cursor for
the next table (i.e., table 1). Log writer 0 starts the persistence of table 0. Although only
commands w(x, 21) and w(y, 20) are present in the log, they represent the reachable state
by executing commands 0 to 3. The whole command interval information is kept on the
log file header, and it is crucial to ensure safety during recovery. After the log is fully
persisted to the stable storage, table 0 is reset, and it is now free to receive commands
from another batch. In parallel to the table 0 logging, the reduction procedure executes
commands from the next batch (i.e., batch 1) by using table 1. When the whole batch is
processed, a signal is sent to log writer 1, so it locks table 1 and saves its content to the
log. After finishing the persistence of the table, the log writer releases the lock.

The I/O operations are substantially more expensive than updates in the hash table.
So, it is expected that log writers take longer to flush the content of a table to stable storage
than the reduction procedure to fill the table. It might lead to a situation where a batch
is going to be reduced with the support of a table being accessed by a log writer. Since
log writers lock the table before starting its job, the reduction procedure will wait for that
table to be released. This situation does not hurt safety, and multiple storage devices can
alleviate the contention to the tables access. In this case, every writer would store log
files in different devices, improving throughput by minimizing the I/O bottleneck. This
approach assures a sequential ordering of logs being written on the same storage device.

batch 0 batch 1

0 1 2 3 4 5 6 ...

log[0,3)

w(y,28)r(z)w(z,34)r(x)w(x,21)w(y,20)w(x,14)

x: w(x,14)table 0

table 1

y: w(y,20)
x: w(x,14)

y: w(y,20)
x: w(x,21)

z: w(z,34) z: w(z,34)

E

y: w(y,20)
x: w(x,21)

writer 0

writer 1

log[3,6)

z: w(z,34)

locked

locked

y: w(y,28)

Figure 3. Concurrent execution between log reduction and log persistence.

4.2. Recovery protocol
The recovery protocol allows a replica to restore a consistent state and catch up with other
system replicas. Recovering a failed replica requires retrieving the commands the replica
missed while it was down. These commands can be obtained from other replicas’ logs.
At initialization, a recovering replica checks the last instance i stored in its local log and
sends a request to other replicas asking for more up-to-date logs. Since log files store in
its metadata the batch they correspond to and the lower and higher indexes of commands
in that batch, retrieving the highest index value is straightforward. A request informing
index i is sent to other replicas, and those ahead in the execution reply with their highest
index number h. The recovering replica requests the log represented by all files within
the [i, h] interval to the correspondent replica.

The retrieved log is composed of a set of files, each one representing a reduced
set of commands in a batch. These files are processed in ascending order so that the
commands’ execution follows the same delivered order. If, after the recovery, a replica
receives any command with an index j, where j ≤ h, it only has to ignore and not
execute it, since its effects would have already been applied to its state. If j > h + 1,
there are missing commands that were not recoverable by the log. In this case, the replica
keeps all the incoming requests in a temporary queue and restarts the recovery procedure.
Eventually, some replica will have a h index higher than j and the gap of commands
would be fulfilled.

5. Experimental Evaluation
The experimental evaluation of our approach seeks to answer two main questions:

1. Does our protocol allows a faster recovery procedure? We evaluate the gener-
ated log files on different interval configurations against the traditional approach,
comparing the number of commands and total file sizes. We appraise a recovery
time reduction due to the minimal number of commands on our persistent log state
and lower storage usage.

2. Does our approach represent a significant overhead on the application’s per-
formance? We evaluate this by comparing the standard logging scheme’s execu-
tion against our approach with different batch sizes and number of storage devices.

Our analysis compares the throughput and latency impact of these configurations
on different workloads.

5.1. Key-value store prototype
We implemented a key-value store prototype in Go.1 The prototype is configurable to ex-
ecute the standard or the proposed logging approach. Read and write operations are illus-
trated by the commands r(k) and w(k, v), where keys are represented as integer numbers
and values as fixed-size strings of 100 bytes. Commands are logged in batches, and the
replies to the batch commands are sent to clients only after logging and execution. All
persisted commands are serialized with protocol buffers.

The load generation produces read and write commands according to an input file
following a specific workload pattern. However, we abstract the client-side and network
layer, focusing only on the execution of the requests. Thus, the only considered costs
are those caused by command execution and logging. This decision aims to avoid the
interference of performance bottlenecks unrelated to the logging itself.

5.2. Workloads and configuration
For the experiments, we utilized a subset of the standard Yahoo! Cloud Serving Bench-
mark (YCSB) [Cooper et al. 2010] workloads with two variations of YCSB-A, named
YCSB-AW and YCSB-AWL. To aligning with our proposed model, both inserts and up-
dates are mapped into write operations. The corresponding read (r) and write (w) per-
centages and request distributions of each workload are shown below:

• YCSB-A: 50% of reads and 50% of writes, following a uniform distribution;
• YCSB-B: 95% of reads and 5% of writes, following a uniform distribution;
• YCSB-C: 100% of reads, following a uniform distribution;
• YCSB-D: 95% of reads and 5% of writes, following a latest distribution (i.e.,

recent accessed variables are more likely to be accessed next);
• YCSB-AW: 100% of writes, following a uniform distribution;
• YCSB-AWL: 100% of writes, following a latest distribution.

The standard workloads YCSB-A, YCSB-B, and YCSB-C, vary in the percentage
of read and write commands, but all of them follow an uniform distribution to choose
which key is going to be accessed. YCSB-D uses a different distribution that increases
the chances of subsequent access to the most recent updated keys. This behavior is very
common in social networks, as it simulates access to trending topics. Our custom-defined
workload YCSB-AW constitutes a write-only workload with records being uniformly ac-
cessed. It represents the worst-case scenario for the proposed technique where no com-
mand discard is stimulated. The YCSB-AWL is also write-only, but most recent records
are more likely accessed with the latest distribution.

All workloads consider 106 distinct keys during load distribution. Registered logs
captured during the experiments account for the execution of 106 requests. Experiments
were executed on the Emulab Utah [White et al. 2002] cluster, utilizing a Dell Poweredge
R430 node equipped with two 2.4 GHz 8-Core Xeon E5-2630v3 processors; 64 GB 2133
MT/s DDR4 random access memory; and two 1 TB HDD with 7200RPM. The node
operates under a Ubuntu 18.04LTS image. Go binaries were compiled on go-1.15.

1Prototype implementation is public available at: https://github.com/Lz-Gustavo/
beelog/tree/master

5.3. Recovery impact

We first analyze the generated logs to conjecture about the recovery impacts caused by our
proposed logging approach (PL) by comparing it against the standard logging (SL). Figure
4(a) shows the reduction achieved on the number of commands for each combination of
workload and batch size, with data normalized to SL values. The x-axis shows the results
when batch size is set to 1, 10, 100, and 1000. For all workloads, the number of commands
written on SL logs was exactly 106. The same can be said for YCSB-AW since it was not
observed discarding of commands in this case. So, it presents a 0% reduction compared
to the SL regardless of the batch size. It is explained by the write-only workload with
records evenly distributed. For YCSB-AWL, the latest distribution shows an interesting
scenario by stimulation the removal of write operations over recent out-dated variables
on our technique. As can be seen, the greater the batch size, the greater the odds of
such operations being identified and, thus, safely discarded during log procedures. On
this same workload, it is observed gains of 32% fewer commands on PL-1000. Read-
intensive loads such as YCSB-B, YCSB-C, and YCSB-D depict our best scenarios with
all commands consciously eliminated for YCSB-C, a 100% reads workload, and more
than 90% of reduction seen for YCSB-B and YCSB-D.

Figure 4(b) shows the total log size reductions compared to SL. On the standard
approach, the log size observed were: 130.64MB for YCSB-AW and AWL; 80.99MB
for YCSB-A; 36.42MB for YCSB-B; 31.46MB for YCSB-C; and 41.26MB for YCSB-
D. On the PL-1 scenarios, where a logging procedure is triggered after each command,
our approach presents a penalty of ≈17% on total log sizes for workloads YCSB-AW
and YCSB-AWL and a 5% increase for YCSB-A. This is explained by the fact that PL
generates a new log file with its proper metadata on every batch reduction, and the sum of
all these generated files yields a slight size increase when compared to an individual log
file generated on SL. This effect is not noticed for other workloads, where considerable
size reductions are shown for read-intensive workloads. Considering larger batches, we
observe significant improvements for various workloads. For batch sizes equal or superior
to 10 commands, YCSB-A maintains a ≈ 20% total size reduction. YCSB-AWL shows
incremental benefits on larger batches, with a 30% decrease in log sizes for PL1000.
Substantial differences can be seen for YCSB-C, B, and D, where a nearly 100% decrease
is shown for the former and ≈ 80% for the other two for batch sizes of 1000 commands.

(a) Number of commands (b) Log size reductions

Figure 4. Reduction of recovery logs for 1M execution commands: (a) number of
commands; and (b) total size normalized to SL approach values.

5.4. Latency and throughput assessment

Figure 5(a) depicts a fine-grained analysis for PL’s latency values, considering only the
YCSB-A workload and varying one and two storage devices. We break down latency
measurement to capture each time taken to (i) write the first command on a log batch,
reporting the costs related to table swapping and synchronization; (ii) update an entire
table, representing the time taken to reduce a batch; and (iii) write log to stable storage,
measuring the time taken on the synchronous log flush to stable storage. As shown,
flushing to stable storage accounts for≈ 66% of the time on all studied batch sizes, with a
low variation on each of them. By doubling the number of disks, we approximately halve
the flush measurement and waiting time for the first command to be recorded on a table.
This latter effect happens because log contention is decreased when exploiting parallel I/O
to multiple devices, thus accelerating table swapping. In this sense, we estimate that more
disks, together with more tables, could represent significant improvements by reducing
overall latency on log persistence for our approach.

In Figure 5(b), we analyze the average latency measured for log persistence, com-
paring PL with its two disks configuration against SL on different workloads and batch
sizes. At first glance, both strategies manifest low variations for latency values as batch
size increases. This result is explained by the fact that synchronous log flush to stable
storage is orders of magnitude higher than the time needed for batching commands, even
considering processing in between. Also, SL values do not vary with the simulated work-
load since this strategy logs every command independently of its operation or accessed
key. That is different for PL because of commands discard, where latency values differ-
entiate upon workload and present lower values on read-intensive scenarios. Considering
all studied settings, PL displays a ≈ 30% average increase in log persistence latency
when compared to SL. Although increasing latency, our approach favors throughput, as
discussed next.

(a) Latency breakdown (b) Average latency

Figure 5. Evaluation of Latency breakdown for PL YCSB-A (a) and the average
latency of SL and PL strategies for each workload (b), considering different
batch sizes.

Figure 6 depicts throughput box plots for five workloads, considering values of
SL, and PL with 1 (PL-1D) and 2 (PL-2D) storage devices being used. Each graph shows
the throughput of these three scenarios, considering the same batch size configuration.
As shown for all workloads and configured batch sizes, our approach stands with similar
throughput values for PL-1D compared to SL. Especially on YCSB-AWL, a workload

(a) 1 command batch size (b) 10 commands batch size

(c) 100 commands batch size (d) 1000 commands batch size

Figure 6. Throughput analysis for different workloads and batch sizes with SL,
PL-1D and PL-2D configurations.

with only write operations and latest distribution (i.e., that mimics a scenario where most
recent records are constantly updated), PL-1D presents significant improvements, being
≈ 50% on median throughput for 1000 command batch size in Figure 6(c). This effect
is a consequence of eliminating subsequent write operations, where only the latest update
of a particular key is kept for each batch of commands. The removal of writes incurs a
reduction in data usage compared to SL, being more prominent than eliminating reads due
to the value size associated with each operation. Each read takes only an integer argument
indicating the corresponding key, while a write also records a 100B byte sequence value
associated with its key.

Regarding PL-2D scenarios, consistent gains can be seen for all workloads. This
effect emerges because of the the I/O bottleneck’s mitigation perceived during log flush
to stable storage. PL-2D median values show a ≈ 100% increase on throughput for most
workloads on 1, 10, and 100 batch size configurations.

6. Related work

Despite being a performance limiter, logging strategies are crucial for providing durabil-
ity and state recovery. This section highlights related approaches that rethink log recovery

mechanisms to reduce overhead and recovery time and discuss the similarities and differ-
ences of those most related to our proposed technique.

ARIES [Mohan et al. 1992] implements a data-level logging approach to keep
track of tuple values instead of logging operations or transactions. It aims to acceler-
ate state recovery by overwriting old values from their data-log structure. This strategy
allows a parallel recovery since only a single value is recorded for each key. A draw-
back of this approach is the overhead caused during normal execution. Being a verbose
logging method, it excels in conventional persistent storage databases, where I/O costs
are orders of magnitude higher than transactions’ processing time. However, it yields
significant overheads for in-memory datastores, where logging costs dominate the overall
performance. In [Yao et al. 2016], the authors propose an adaptive approach that alter-
nates between ARIES data logging and command logging [Malviya et al. 2014] methods
during the execution. They adjust the percentage of data logging versus command log-
ging on-the-fly based on a dynamically parsed cost model and online heuristics. Their
motivation is to reduce the costs originated by the heavy-weight ARIES logging method,
while still taking advantage of data logging recovery.

Even though ARIES allows a parallel recovery procedure, its extensive use rep-
resents an I/O bottleneck on various workloads, whereas command logging significantly
reduces transactions’ processing costs. Our proposed approach bears some similarities
with ARIES, such as the overwrite of the outdated entries in the log, but it implements a
command logging strategy. While ARIES overwrites old values, our approach discards
unnecessary commands for recovery. Our logging scheme demonstrates low overhead by
separating the log reduction procedure from its persistence into stable storage. In particu-
lar, when multiple storage devices are available, it can even increase the system’s overall
throughput. With regard to recovery, our approach hastens state recovery by reducing the
number of commands to be transferred and executed.

Apache Kafka [Kreps et al. 2011, Narkhede et al. 2017] is a popular event stream-
ing platform that serves as a publish/subscriber middleware for real-time data processing.
To viably maintain long-term data, Kafka implements a log compaction approach that
aims to accelerate state recovery and reduce memory usage by eliminating intermediate
state changes from a topic log. This compaction procedure is asynchronously executed
by a set of cleaner threads. Cleaners treat the log as a combination of two segments: the
clean portion that corresponds to already-compacted messages, storing only one value for
each key; and the dirty portion, that contains messages written after the last compaction.
The compaction procedure first executes over the dirty segment, arranging an in-memory
hash map that stores the offset of the latest message for each key. After, the cleaner tra-
verses all clean records, starting from the oldest one and checks if keys are on the map.
If so, it decides whether the record must be kept (i.e., if it is not on the offset map) or
later deleted. By default, Kafka executes compaction whenever half of the topic contains
dirty entries since the compaction procedure compromises message throughput on the
topic. Different from Kafka, we tackle compaction during the log procedure itself, where
we immediately discard unnecessary operations and overwrite updates while tracking its
corresponding segments. Our execution model aims to concurrently flush logs to stable
storage while logging new operations instead of asynchronously compacting the recovery
log.

In Taurus [Yu et al. 2016], the authors present an approach that relaxes the sequen-
tial logging by tracking fine-grained dependencies among transactions. On uniform dis-
tributed workloads, where records are evenly accessed, Taurus can perform both logging
and recovery in parallel. Taurus classifies operation dependencies into three categories to
arrange a global dependency graph. RAW (read-after-write) transactions are compressed
during recovery by exploiting the fact that the log is flushed to persistent storage sequen-
tially. WAW (write-after-write) transactions are never relaxed and enforce a must happen
before relation between two transactions during recovery. WAR (write-after-read) depen-
dencies are always discarded; they do not constraint commit order because reads do not
leave side effects in the system. This procedure allows logging on different devices in
arbitrary orders, in addition to enabling faster recovery. We implement a similar approach
by allowing logs to be concurrently flushed to stable storage, exploiting different storage
devices if available, but we restrict this granularity to the configured batch size and assure
a sequential ordering to logs being written on the same device. On our approach, we tackle
dependencies among operation during the logging procedure, where reads are idempotent
and unnecessary for state recovery, and writes are only dependent if they operate over the
same key. Once only one write operation is retrieved per key on each generated log file,
parallel processing of commands on each file is allowed as long as subsequent files are
processed in the ascending order of log indexes.

Corfu [Balakrishnan et al. 2013] is a distributed and shared log that allows client
operations to run in parallel. During operation, Corfu’s clients maintain a local pro-
jection map that stores record references to physical log positions divided into pages
distributed across a cluster of logging modes. Concurrent operations indexed to pages
located in distinct nodes run in parallel, improving throughput and scalability. Similar
to the Corfu, other hacks and tricks allow the system to use storage devices efficiently
[Bessani et al. 2013, Zheng et al. 2014]. For instance, in [Bessani et al. 2013], authors
propose the parallel logging, which attempts to postpone and batch synchronous writes
in order to reduce their number and alleviate their latency. These strategies are orthogo-
nal and could be coupled to our approach once they aim to optimize performance of I/O
operations and logging management.

In [Mendizabal et al. 2017], the authors present alternatives for state recovery in
Parallel State Machine Replication (P-SMR – Parallel State Machine Replication). This
replication model is an extension of the traditional SMR, which allows parallel execu-
tion of independent commands to achieve higher throughput. Speedy Recovery is a re-
covery protocol that explores the semantics of application’s commands to map possible
dependencies between commands, considerably reducing the recovery time when explor-
ing the parallel execution of independent commands. This dependency identification is
performed by combining three strategies: evaluation of commands in batch, in which de-
pendencies are considered when analyzing the execution of a whole group of commands;
fast conflict detection, where each set of grouped commands has its own signature that
represents all variables impacted by the execution of the batch; and an efficient depen-
dency handling, since the detection of dependency between batches of commands is done
through bitmap comparisons. Their protocol speeds up recovery by anticipating the exe-
cution of incoming commands that do not depend on the log. Therefore, new commands
can be processed while the log is retrieved and processed by the recovering replica. Our
method follows a different approach, where we focus on log reduction. However, the

strategies are complementary. It would be beneficial to reduce the log size and still antic-
ipate the execution of incoming commands while the logging is being processed.

7. Conclusion
This paper presented a logging approach that exploits application semantics to safely dis-
card entries from command logs, delivering reduced log files that permit a faster state
recovery by benefiting both transferring and log installation. Although shrinking the log,
the state achieved by processing the log of commands is identical to the state produced
by the execution of a standard unmodified log. In order to alleviate I/O bottlenecks and
reduce logging overhead, our approach implements optimizations regarding log manage-
ment, such as batching and parallel I/O.

Results show that our approach can produce reduced logs with minimal impact on
the application’s performance, exhibiting less overhead than a standard logging scheme
on most analyzed workloads due to command discard and concurrently execution. For
instance, in balanced workloads composed of 50% of reads and 50% of writes, our ap-
proach delivers a recovery log with 50% fewer commands and 20% smaller file size.
When equipped with a single storage device, our technique shows similar throughput
against the standard log, and double throughput on median values when exploiting par-
allel I/O with two disks. By separating log reduction from persistence, the approach has
demonstrated to scale-up with the addition of more persistence devices.

References
Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., and Buyya, R. (2015).

Big data computing and clouds: Trends and future directions. Journal of Parallel and
Distributed Computing, 79:3–15.

Balakrishnan, M., Malkhi, D., Davis, J. D., Prabhakaran, V., Wei, M., and Wobber, T.
(2013). Corfu: A distributed shared log. ACM Transactions on Computer Systems
(TOCS), 31(4):1–24.

Bessani, A., Santos, M., Felix, J., Neves, N., and Correia, M. (2013). On the efficiency
of durable state machine replication. In USENIX Annual Technical Conference, pages
169–180.

Budhiraja, N., Marzullo, K., Schneider, F. B., and Toueg, S. (1993). The primary-backup
approach. Distributed systems, 2:199–216.

Chaczko, Z., Mahadevan, V., Aslanzadeh, S., and Mcdermid, C. (2011). Availability and
load balancing in cloud computing. In ICCSM, Singapore.

Clay, K. (2013). Amazon.com goes down, loses $66,240 per minute.
https://www.forbes.com/sites/kellyclay/2013/08/19/amazon-com-goes-down-loses-
66240-per-minute/.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. (2010). Bench-
marking cloud serving systems with YCSB. In 1st ACM SoCC.

Elnozahy, E. N., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002). A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys (CSUR),
34(3):375–408.

Junqueira, F. P., Reed, B. C., and Serafini, M. (2011). Zab: High-performance broadcast
for primary-backup systems. In IEEE DSN, pages 245–256. IEEE.

Kreps, J. (2014). I Heart Logs: Event Data, Stream Processing, and Data Integration.
O’Reilly Media, Inc.

Kreps, J., Narkhede, N., Rao, J., et al. (2011). Kafka: A distributed messaging system for
log processing. In Proceedings of the NetDB, volume 11, pages 1–7.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565.

Liu, X., Iftikhar, N., and Xie, X. (2014). Survey of real-time processing systems for big
data. In Proceedings of the 18th International Database Engineering & Applications
Symposium, pages 356–361.

Malviya, N., Weisberg, A., Madden, S., and Stonebraker, M. (2014). Rethinking main
memory oltp recovery. In 2014 IEEE 30th International Conference on Data Engi-
neering, pages 604–615. IEEE.

Mendizabal, O. M., Dotti, F. L., and Pedone, F. (2016). Analysis of checkpointing over-
head in parallel state machine replication. In Annual ACM Symposium on Applied
Computing, pages 534–537.

Mendizabal, O. M., Dotti, F. L., and Pedone, F. (2017). High performance recovery for
parallel state machine replication. In 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pages 34–44. IEEE.

Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, P. (1992). Aries: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Transactions on Database Systems (TODS), 17(1):94–162.

Narkhede, N., Shapira, G., and Palino, T. (2017). Kafka: the definitive guide: real-time
data and stream processing at scale. O’Reilly Media, Inc.

Ongaro, D. and Ousterhout, J. (2014). In search of an understandable consensus algo-
rithm. In USENIX Annual Technical Conference, pages 305–319.

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M.,
Barb, C., and Joglekar, A. (2002). An integrated experimental environment for dis-
tributed systems and networks. ACM SIGOPS.

Yao, C., Agrawal, D., Chen, G., Ooi, B. C., and Wu, S. (2016). Adaptive logging: Opti-
mizing logging and recovery costs in distributed in-memory databases. In Proceedings
of the 2016 International Conference on Management of Data, pages 1119–1134.

Yu, X., Zhu, S., Kaashoek, J., and Pavlo, A. (2016). Taurus: A Parallel Transaction
Recovery Method Based on Fine-Granularity Dependency Tracking. CoRR.

Zhang, H., Chen, G., Ooi, B. C., Tan, K.-L., and Zhang, M. (2015). In-memory big data
management and processing: A survey. IEEE Transactions on Knowledge and Data
Engineering, 27(7):1920–1948.

Zheng, W., Tu, S., Kohler, E., and Liskov, B. (2014). Fast databases with fast durabil-
ity and recovery through multicore parallelism. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 465–477.

