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ABSTRACT
Partitioned state machine replication is a technique that extends

classical state machine replication with state partitioning (or shard-

ing) to provide both fault tolerance and performance scalability. The

crux of the technique is ordering client requests within a partition,

among the replicas that implement the partition, and across par-

titions, involving all the replicas accessed by the request. To cope

with the complexity of ordering requests, partitioned state machine

replication can use atomic multicast, a communication abstraction.

Atomic multicast provides the means for requests to be propagated

reliably and consistently to one or more sets of groups of replicas,

where each replica group implements one partition. The paper re-

visits atomic multicast from the perspective of partitioned state

machine replication and makes the following contributions: First,

we show that if one implements partitioned state machine repli-

cation using an atomic multicast with global total order, a strong

order property, then replicas would need to further coordinate as

part of the execution of requests to ensure correctness. Second, we

introduce a stronger version of atomic multicast that accounts for

real-time dependencies between requests. Our proposed atomic

multicast can be used to order requests within and across partitions

so that replicas do not need to further coordinate to ensure lineariz-

ability. Third, we extend a well-known implementation of atomic

multicast to ensure the stronger order property.
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1 INTRODUCTION
Designing strongly consistent applications that tolerate failures and

scale performance is challenging. State machine replication and

primary-backup replication, the two most fundamental techniques

for fault tolerance [18], do not scale performance as replicas are

added to the system. In state machine replication, client requests

are executed by all the replicas in the same order. As long as exe-

cution is deterministic, replicas will transition through the same

state changes and produce the same results. Since each replica ex-

ecutes every request, adding additional replicas will not result in

any performance improvements. On the contrary, a larger number

of replicas may lead to a degradation in performance. This hap-

pens because replicas need to coordinate to totally order requests,
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and the more replicas involved, the more messages need to be ex-

changed, reducing the number of requests that can be ordered in

the system [17]. In primary-backup replication, the primary replica

receives and executes all requests, and then sends state changes to

the backup replicas. The backups simply apply the state changes.

As in state machine replication, increasing the number of replicas

may degrade performance as it increases communication between

the primary and the backups.

State partitioning (also known as sharding) is an important tech-

nique to scale the performance of distributed applications [9]. The

idea is to divide the application state into partitions and store each

partition in a different set of servers. Therefore, requests that access

different partitions can be executed in parallel. As long as the appli-

cation state can be divided into an increasing number of partitions

and requests access subsets of partitions uniformly, one can expect

performance to improve when increasing the number of partitions.

Handling requests that access data stored in multiple partitions is

challenging as such requests require the involved servers to coordi-

nate. Sharding can be combined with state machine replication to

provide both performance scalability and fault tolerance. In Scalable

State Machine Replication (S-SMR) [4], for example, each partition

is implemented by a set of replicas which interact using state ma-

chine replication. Requests that access a single partition are ordered

by the replicas in charge of the accessed partition. Requests that

access multiple partitions must be consistently ordered by all the

replicas involved in the request. In this paper, we refer to such an

approach as partitioned state machine replication.
Ordering requests within and across partitions is complex (e.g.,

it may involve solving multiple instances of consensus [6], one con-

sensus instance per partition). Oneway to copewith this complexity

is to encapsulate the ordering of requests in a group communication

protocol called atomic multicast—not to be confused with IP multi-

cast, a network-level communication primitive. In atomic multicast,

the replicas of a partition constitute a group, a unit of communica-

tion that can be addressed as a whole. The message sender defines

the destination of a message by specifying the set of groups that

must order and deliver the message. An atomic multicast algorithm

determines how the destination replicas must coordinate to order

messages within and across groups consistently.

This paper revisits the problem of atomic multicast from the

perspective of strongly consistent replicated applications. More

specifically, we relate the notions of strong consistency, in the

form of linearizability [21], and atomic multicast in the context

of partitioned state machine replication. Intuitively, linearizability

states that clients of a sharded and replicated service must observe

the execution of requests as if the service was implemented by a
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single server. Linearizability captures real-time dependencies be-

tween requests, that is, if a request precedes another request in

real time, then the execution of the first request should be reflected

in the execution of the second request. Several specifications of

atomic multicast exist in the literature [11]. In their seminal tax-

onomy, Hadzilacos and Toueg [20] have proposed a hierarchy of

atomic multicast definitions, the strongest of which ensuring a

property called global total order. In brief, global total order states

that collectively replicas must order requests consistently. For ex-

ample, if one replica orders message 𝑚1 before message 𝑚2 and

another replica orders𝑚2 before𝑚3, then any replica that delivers

𝑚1 and𝑚3 should order𝑚1 before𝑚3. We show in the paper that

if one implements partitioned state machine replication using an

atomic multicast with global total order, then replicas need to fur-

ther coordinate as part of the execution of requests to respect the

real-time dependencies required by linearizability. Indeed, existing

approaches to partitioned state machine replication introduce an

ad hoc coordination phase between servers during the execution

of multi-shard requests (e.g., [4, 24]). The result presented in this

paper suggests that to avoid this coordination, partitioned state

machine replication needs a stronger notion of atomic multicast.

We introduce a stronger version of the strongest atomic multicast

in [20], that accounts for real-time dependencies between requests.

The proposed protocol can be used to order requests within and

across partitions so that replicas do not need to further coordinate

to ensure linearizability. It uses atomic global order, a property

strictly stronger than global total order. We revisit a well-known

atomic multicast algorithm, attributed to Skeen [5], and show that

it does not satisfy atomic global order. Skeen’s atomic multicast

algorithm does not tolerate failures, but it serves as the basis for

several protocols that have extended the algorithm’s original ideas

to cope with replica failures (e.g., [7, 8, 19, 32]). Our result holds

for these extensions as well. We then show how Skeen’s atomic

multicast can be modified to guarantee atomic global order, and

thus implement the proposed Atomic Multicast protocol.

This paper is organized as follows.

• Section 2 provides the background information needed to

follow the rest of the paper, introducing basic assumptions

and the definitions of atomic multicast, linearizability, state

machine replication (SMR), and partitioned SMR.

• In Section 3, we prove that partitioned state machine replica-

tion with an atomic multicast primitive that ensures global

total order requires additional replica coordination to imple-

ment linearizable applications. We propose an atomic mul-

ticast, based on atomic global order, and prove that when

equipped with such an atomic multicast, replicas do not need

this additional coordination.

• Section 4 shows that the well-known atomic multicast proto-

col proposed by Skeen does not ensure atomic global order

and present modifications to the original protocol to guaran-

tee the stronger property.

• Section 5 reviews several specifications and implementa-

tions of atomic multicast and a few systems that implement

consistent order using ad hoc mechanisms.

• Section 6 concludes the paper with a few observations and

directions for further research.

2 BACKGROUND
In this section, we present the system model and definitions used

in the paper. We then characterize atomic broadcast and atomic

multicast, two fundamental communication abstractions we build

upon. We conclude the section with a description of state machine

replication (SMR) and partitioned SMR.

2.1 System model and definitions
We assume a distributed system with a bounded set of processes,

Π = {𝑝1, ..., 𝑝𝑛}. Processes can fail by crashing but never perform

incorrect actions (i.e., no Byzantine failures). A process is correct if
it does not crash, and faulty otherwise. We define Γ = {𝑔1, ..., 𝑔𝑚}
as the set of disjoint process groups in the system. We assume each

group contains 2𝑓 + 1 processes, where 𝑓 is the maximum number

of faulty processes per group. The assumption about disjoint groups

has little practical implication since it does not prevent collocating

processes that are members of different groups on the same ma-

chine. Yet, it is important since atomic multicast requires strong

assumptions when groups intersect [19, 33].

Processes communicate by exchangingmessages and do not have

access to a shared memory or a global clock. Communication links

do not create, corrupt, or duplicate messages, and guarantee that if

a correct process 𝑝 sends a message𝑚 to a correct process 𝑞, then 𝑞

receives𝑚. We assume the system is partially synchronous [13]: it

is initially asynchronous and eventually becomes synchronous. The

time when the system becomes synchronous is called the Global
Stabilization Time (GST), and it is unknown to the processes. Before

GST, there are no bounds on the time it takes for messages to be

transmitted and actions to be executed. After GST, such bounds

exist but are unknown.

2.2 Atomic broadcast and multicast
Atomic broadcast and multicast are abstractions that offer pro-

cesses strong communication guarantees. These abstractions can

be used to render an application fault tolerant by means of repli-

cation (see Figure 1). Since atomic broadcast is a special case of

atomic multicast, we present the more general properties of atomic

multicast. Atomic multicast is defined by primitives multicast(𝑚)
and deliver(𝑚), where 𝑚 is a message addressed to a subset of

groups in Γ. We represent the destination groups of message 𝑚

as 𝑚.𝑑𝑠𝑡 . By abuse of notation, we write 𝑝 ∈ 𝑚.𝑑𝑠𝑡 instead of

∃𝑔 ∈ Γ : 𝑔 ∈𝑚.𝑑𝑠𝑡 ∧ 𝑝 ∈ 𝑔.
Toueg and Hadzilacos [20] define three types of atomic multicast

that differ by the strength of their guarantees. We consider the

strongest type of atomic multicast, defined by the four properties

presented next. (More precisely, we present the uniform version of

the atomic multicast properties defined in [20].)

• Validity: If a correct process multicasts a message𝑚, then

some correct process in𝑚.𝑑𝑠𝑡 delivers𝑚.

• Agreement: If a process delivers a message𝑚, then all correct

processes in𝑚.𝑑𝑠𝑡 eventually deliver𝑚.

• Integrity: For any message 𝑚, every process 𝑝 delivers 𝑚

at most once, and only if 𝑝 ∈ 𝑚.𝑑𝑠𝑡 and𝑚 was previously

multicast.
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Figure 1: State machine replication.

• Global total order: Define relation ≺ on the set of messages

processes deliver as follows:𝑚 ≺𝑚′ iff there exists a process

that delivers𝑚 before𝑚′. The relation ≺ is acyclic.

Global total order avoids cycles in the delivery sequence of mes-

sages. For example, suppose there are three processes, 𝑝𝑥 , 𝑝𝑦 , and

𝑝𝑧 , each one in a different group, and messages 𝑚1,𝑚2 and 𝑚3.

Global total order prevents a situation where 𝑝𝑥 delivers𝑚1 and

then 𝑚2 (𝑚1 ≺ 𝑚2), 𝑝𝑦 delivers 𝑚2 and then 𝑚3 (𝑚2 ≺ 𝑚3), 𝑝𝑧
delivers𝑚3 and then𝑚1 (𝑚3 ≺𝑚1).

But global total order by itself allows faulty processes to deliver

undesired sequences of messages. Indeed, it allows “holes" to appear

in the message delivery sequence of faulty processes. For example,

consider an execution where messages𝑚1 and𝑚2 are multicast

to group 𝑔. A process 𝑝 in 𝑔 delivers𝑚1 and then𝑚2, and a faulty

process 𝑞 in 𝑔 delivers𝑚2, then fails, and never delivers𝑚1 (i.e.,𝑚1

leaves a hole in the delivery sequence of 𝑞). This execution satisfies

all atomic multicast properties above, but it is undesired because

processes 𝑝 and 𝑞 may produce different results after executing a

request in𝑚2. To prevent such executions, we also require atomic

multicast to also satisfy prefix order [31].

• Prefix order: For any two messages𝑚 and𝑚′ and any two

processes 𝑝 and 𝑞 such that {𝑝, 𝑞} ⊆ 𝑚.𝑑𝑠𝑡 ∩𝑚′.𝑑𝑠𝑡 , if 𝑝
delivers𝑚 and 𝑞 delivers𝑚′, then either 𝑝 delivers𝑚′ before
𝑚 or 𝑞 delivers𝑚 before𝑚′.

Atomic broadcast is a special case of atomic multicast where

there is a single group in Γ.

2.3 State machine replication
State machine replication is a well-established approach to ren-

dering applications fault-tolerant. Servers fully replicate the ap-

plication state and execute the same requests in the same order.

Consequently, every replica transitions through the same sequence

of state changes and produces the same sequence of responses upon

executing requests. Clients that interact with an application that

tolerates failures by means of state machine replication observe the

same application behavior as if the application was implemented

by a single replica. This aspect of state machine replication is more

formally captured by the property below.

• Linearizability: For any execution 𝜎 , there is a total order 𝜋

on application requests that:

(i) respects the semantics of the requests, as defined in their

sequential specifications, and

(ii) respects the real-time precedence of requests, where a

request precedes another request in real time if the first

request finishes before the second request starts [2, 21].

2.4 Partitioned state machine replication
State machine replication improves application availability but not

performance, as a consequence of every replica executing all re-

quests. Some approaches have proposed to partition the application

state, also known as sharding, and implement each partition with an

instance of SMR (e.g., [9]). If the partitioning is such that requests

fall within one partition only (i.e., the objects read and written by

the request belong to a single partition) and requests are evenly

distributed among partitions, then we can scale performance with

the number of partitions in the system. Moreover, since lineariz-

ability is a composable property [21], such a scheme will result in

a linearizable application.

If the application state cannot be perfectly partitioned, as de-

scribed above, then one must account for requests that involve

multiple partitions (i.e., a request that reads and writes objects that

belong to more than one partition). There are two aspects concern-

ing multi-partition requests: how to consistently order requests

that span multiple partitions, and how to execute them. Atomic

multicast is a useful abstraction to propagate requests to partitions

reliably and properly ordered.

Executing requests that involve multiple partitions is challenging

since partitions may lack the state needed to execute the request.

For example, assume a request 𝑟 that swaps the contents of state

variables 𝑥 and 𝑦, which reside in partitions 𝑃𝑥 and 𝑃𝑦 , respectively.

Replicas in 𝑃𝑥 (resp. 𝑃𝑦 ) need the value of 𝑦 (resp. 𝑥) in order to

update 𝑥 (resp. 𝑦). In S-SMR [4], after delivering a request, replicas

exchange the state needed to execute the request. In the example

above, replicas in 𝑃𝑥 (resp. 𝑃𝑦 ) send to replicas in 𝑃𝑦 (resp. 𝑃𝑥 )

variable 𝑥 (resp. 𝑦). After exchanging the needed variables, replicas

in all involved partitions execute 𝑟 . Updates on variables not part

of a partition are kept by the partition momentarily, during the

execution of the request, and then discarded. In DynaStar [24], all

variables read and written by a multi-partition request are moved

to one of the partitions involved in the request. Only replicas in

this partition execute the request.

The details of how to execute multi-partition requests are or-

thogonal to our contributions in this paper. Hence, for simplicity,

we assume that multi-partition requests can be executed at each

involved partition without exchange of data. A request finishes

execution once the issuing client gets a reply from each involved

partition. This simplified execution model does not allow a request

to swap the contents of variables 𝑥 and 𝑦 if they reside in different

partitions. But our model can still capture interesting applications.

For illustrative purposes, hereafter, we consider a key-value store

service that supports two types requests: inserts and range queries.

Key-value pairs are partitioned in two partitions, 𝑃0 being respon-

sible for even-numbered keys and 𝑃1 for odd-numbered keys. An

insert𝑤 (𝑘, 𝑣) inserts the pair (𝑘, 𝑣) and is a single-partition request,

multicast only to the partition in charge of the key. A range query

𝑟 (𝑘𝑠𝑡𝑎𝑟𝑡 , 𝑘𝑒𝑛𝑑 ) returns all previously inserted pairs for keys from

𝑘𝑠𝑡𝑎𝑟𝑡 up to and including 𝑘𝑒𝑛𝑑 . Range queries are multicast to both

partitions, assuming ranges that span multiple keys.

3 ATOMIC GLOBAL ORDER
In this section, we argue that atomic multicast as the sole means

of communication among replicas in partitioned state machine
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replication is not enough to ensure linearizability. We then extend

the atomic multicast properties to achieve linearizable executions

and prove their correctness.

3.1 Atomic multicast alone is not enough
State machine replication can be easily implemented with atomic

broadcast [18]. It suffices for client requests to be atomically broad-

cast to all replicas, which execute the requests following the order

in which the requests are delivered. One would expect that par-

titioned state machine replication could be implemented using a

similar approach, namely, by atomically multicasting requests to

all the groups involved in the request. Upon delivering the request,

a replica executes the request and sends the results to the client.

The request finishes at the client after the client receives a response

from at least one server in each group involved in the request. As

we show next, however, this simple execution model and the multi-

cast properties as described in Section 2 are not enough to ensure

linearizability.

Consider an execution of the key-value store service described

in Section 2.4, involving partitions 𝑃0 and 𝑃1, as depicted in Figure 2

(left). The two commands 𝑤 (0, 𝑣0) and 𝑤 (1, 𝑣1) insert key-value
pairs for keys 0 and 1, respectively. Moreover, 𝑤 (0, 𝑣0) precedes
𝑤 (1, 𝑣1) in real-time, that is, 𝑤 (0, 𝑣0) finishes at client 𝑏 before

𝑤 (1, 𝑣1) starts at client 𝑐 . Now consider a concurrent range query

𝑟 (0, 1) that tries to read previously inserted pairs for keys 0 and

1. The range query accesses both partitions and is delivered and

finishes at 𝑃0 before𝑤 (0, 𝑣0) is delivered, and is delivered at 𝑃1 after
𝑤 (1, 𝑣1) ends. The prefix order property of atomic multicast is not

violated since all processes that deliver the same messages, do it in

the same order. The atomic multicast acyclic order property is not

violated either:𝑤 (0, 𝑣0) and𝑤 (1, 𝑣1) are not directly related since

they are delivered at different partitions, and thus, 𝑟 (0, 1) ≺ 𝑤 (0, 𝑣0)
at 𝑃0 and𝑤 (1, 𝑣1) ≺ 𝑟 (0, 1) at 𝑃1. Although the ≺ relation is acyclic,

𝑤 (1, 𝑣1) ≺ 𝑟 (0, 1) ≺ 𝑤 (0, 𝑣0), it does not account for the real time

order in which 𝑤 (0, 𝑣0) precedes 𝑤 (1, 𝑣1). Even though (0, 𝑣0) is
inserted before (1, 𝑣1) in the key-value store, the range query only

returns the pair (1, 𝑣1), violating linearizability.

The problem above stems from the fact that atomic multicast

properties do not capture real-time dependencies between requests.

Consequently, a system that implements partitioned state machine

replication with the atomic multicast properties described in Sec-

tion 2 would need to introduce additional coordination across par-

titions to ensure linearizability. For example, in S-SMR[4], after

multi-partition request 𝑟 (0, 1) is delivered and before it is executed

by the replicas, partitions 𝑃0 and 𝑃1, involved in 𝑟 (0, 1), exchange
“signal messages" to avoid the problem described above, as depicted

in Figure 2 (right). Intuitively, if partitions 𝑃0 and 𝑃1 exchange

messages during the execution of 𝑟 (0, 1), it is not possible for one
partition to finish executing 𝑟 (0, 1) before the other starts. Thus,
in between the execution of 𝑟 (0, 1) at the partitions involved, we
cannot have other commands being executed at the same partitions.

3.2 Atomic Multicast for Partitioned SMR
The discussion in the previous section shows that differently than

atomic broadcast in state machine replication, atomic multicast is

not sufficient as a communication abstraction to ensure lineariz-

ability in partitioned state machine replication without additional

coordination among replicas. We now strengthen atomic multicast

so that replicas can execute the request after delivering it without

further coordination.

Our strategy is to enlarge the scope of the ordering guarantees

of atomic multicast. We achieve this by replacing the global total

order property of atomic multicast with the following property,

which accounts for the real time relation of messages.

• Atomic global order: Define relation ≺ on the set of messages

processes deliver as follows: 𝑚 ≺ 𝑚′ iff (i) there exists a

process that delivers𝑚 before𝑚′; or (ii)𝑚′ is multicast after

𝑚 is delivered at some destination, in real time. The relation

≺ is acyclic.

The atomic global order property introduces two aspects: it re-

lates atomic multicast primitives in real time and it relates messages

multicast to possibly disjoint destinations. Capturing these real-

time dependencies is fundamental to linearizability. For example,

the execution in Figure 2 (left) does not satisfy atomic multicast

extended with atomic global order: (a) since 𝑤 (1, 𝑣1) is multicast

(by client 𝑐) after 𝑟 (0, 1) is delivered by the replica at partition 𝑃0,

it follows from atomic global order that 𝑟 (0, 1) ≺ 𝑤 (1, 𝑣1); and
(b) from the delivery order of requests at 𝑃1, 𝑤 (1, 𝑣1) ≺ 𝑟 (0, 1),
which leads to a cycle and violates atomic multicast’s global total

order.

3.3 Proof of correctness
In the following, we show that atomic multicast extended with the

atomic global order property ensures that partitioned state machine

replication executions are linearizable.

Let 𝜎 be an execution of partitioned state machine replication

where (a) a client starts a request by multicasting the request to

all the partitions involved in the request (i.e., partitions containing

data read and written as part of the request), (b) when the request is

delivered by a replica, the replica immediately executes the request

and responds to the client, and (c) the client considers the request

as finished after it receives a response from at least one replica in

each partition involved in the request.

Let 𝜋 be a total order of requests in 𝜎 that respects ≺, the order
induced on requests by atomic multicast extended with atomic

global order.

To argue that 𝜋 respects the semantics of requests, let 𝐶𝑖 be the

𝑖-th request in 𝜋 and 𝑝 a process in partition 𝑥 that executes𝐶𝑖 . We

claim that when 𝑝 executes 𝐶𝑖 , all read operations issued by 𝑝 as

part of 𝐶𝑖 result in values that reflect all requests that precede 𝐶𝑖
and no value created by a request that succeeds 𝐶𝑖 . This follows

from (i) the fact that replicas execute requests sequentially, in the

order in which they are delivered, and (ii) the assumption that when

executing a multi-partition request, a replica does not read data

stored at other partitions (see Section 2.4).

We now argue that 𝜋 respects the real-time precedence of re-

quests in 𝜎 . Assume that 𝐶𝑖 ends at a client before 𝐶 𝑗 starts at a

client. We must show that either (a)𝐶𝑖 ≺ 𝐶 𝑗 ; or (b) neither𝐶𝑖 ≺ 𝐶 𝑗

nor 𝐶 𝑗 ≺ 𝐶𝑖 . In case (a), 𝐶𝑖 precedes 𝐶 𝑗 in 𝜋 ; in case (b), since 𝐶𝑖
and 𝐶 𝑗 are not related, we can choose a total order 𝜋 where 𝐶𝑖
appears before 𝐶 𝑗 .
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Figure 2: An execution that violates linearizability (left) and a linearizable execution from S-SMR [4] (right). For simplicity, we
assume that each partition contains a single replica.

For a contradiction, assume that 𝐶 𝑗 ≺ 𝐶𝑖 . Since 𝐶𝑖 ends in real

time before𝐶 𝑗 starts (from our initial assumption), the client issuing

𝐶𝑖 has received a response from a replica 𝑝 in each of the partitions

involved in the execution of 𝐶𝑖 . And from the algorithm, 𝑝 has

delivered 𝐶𝑖 before executing it and responding to the client. We

conclude that 𝐶 𝑗 is multicast after 𝑝 delivers 𝐶𝑖 . From the atomic

order property of atomic multicast, we have that 𝐶𝑖 ≺ 𝐶 𝑗 , which

leads to a cycle and violates the global total order property of atomic

multicast, reaching a contradiction.

4 IMPLEMENTING ATOMIC GLOBAL ORDER
In this section, we present an early atomic multicast algorithm

attributed to Skeen [5] and show that it does not guarantee the

atomic global order property. We then extend this algorithm to

ensure the property and argue about the correctness of the extended

algorithm.

4.1 Skeen’s atomic multicast
In Skeen’s algorithm, each process assigns unique timestamps to

multicast messages based on a logical clock [22]. The correctness of

the algorithm stems from two basic properties: (i) processes in the

destination of a multicast message first assign tentative timestamps

to the message and eventually agree on the message’s final times-

tamp; and (ii) processes deliver messages according to their final

timestamp. These properties are implemented as follows. (We recall

that Skeen’s atomic multicast algorithm does not tolerate failures.)

(i) To multicast a message𝑚 to a set of processes, 𝑝 sends𝑚 to

the destinations. Upon receiving𝑚, each destination updates

its logical clock, assigns a local timestamp to 𝑚 (a tuple

of clock value and partition id for breaking ties), stores it,

and sends its local timestamp for 𝑚 to all destinations in

𝑚.𝑑𝑠𝑡 . Upon receiving local timestamps from all destinations

in𝑚.𝑑𝑠𝑡 , a process computes𝑚’s final timestamp 𝑡𝑠 as the

maximum among all received local timestamps for𝑚. The

process then ensures its logical clock is higher than or equal

to 𝑡𝑠 .

(ii) Messages are delivered respecting the order of their final

timestamp. A process 𝑝 delivers𝑚 when it can ascertain that

𝑚’s final timestamp is smaller than the final timestamp of

Algorithm 1 Skeen’s protocol at partition 𝑃𝑥 . Additions to satisfy

atomic global order in gray.

1: 𝑐𝑙𝑜𝑐𝑘 ← 0 ⊲ 𝑝’s logical clock

2: 𝑙𝑜𝑐𝑎𝑙 [] ← ∅ ⊲ map from message to local timestamp at 𝑝

3: 𝑓 𝑖𝑛𝑎𝑙 [] ← ∅ ⊲ map from message to decided final timestamp

4: 𝑎𝑐𝑘𝑒𝑑 ← ∅ ⊲ set of messages acked by all their destinations

5: 𝑑𝑒𝑙 ← ∅ ⊲ set of delivered messages

6: multicast(𝑚):

7: send ⟨start,𝑚⟩ to𝑚.𝑑𝑠𝑡

8: when receive ⟨start,𝑚⟩:
9: 𝑐𝑙𝑜𝑐𝑘 ← 𝑐𝑙𝑜𝑐𝑘 + 1
10: 𝑙𝑜𝑐𝑎𝑙 [𝑚] ← ⟨𝑐𝑙𝑜𝑐𝑘, 𝑃𝑥 ⟩
11: send ⟨local-ts,𝑚, 𝑙𝑜𝑐𝑎𝑙 [𝑚] ⟩ to𝑚.𝑑𝑠𝑡

12: when receive ⟨local-ts,𝑚, 𝑡𝑠 ⟩ from all partitions𝑚.𝑑𝑠𝑡 :

13: 𝑓 𝑖𝑛𝑎𝑙 [𝑚] ← maximum 𝑡𝑠 received for𝑚

14: 𝑐𝑙𝑜𝑐𝑘 ← max(𝑐𝑙𝑜𝑐𝑘, 𝑓 𝑖𝑛𝑎𝑙 [𝑚])
15: tryDeliver()
16: send ⟨ack,𝑚⟩ to𝑚.𝑑𝑠𝑡

17: when receive ⟨ack,𝑚⟩ from all partitions in𝑚.𝑑𝑠𝑡 :

18: 𝑎𝑐𝑘𝑒𝑑 ← 𝑎𝑐𝑘𝑒𝑑 ∪ {𝑚}
19: tryDeliver()

20: tryDeliver():
21: for each𝑚 ∈ 𝑓 𝑖𝑛𝑎𝑙 \ 𝑑𝑒𝑙 :𝑚 ∈ 𝑎𝑐𝑘𝑒𝑑 in 𝑓 𝑖𝑛𝑎𝑙 [𝑚] order
22: if ∀𝑚′ ∈ 𝑙𝑜𝑐𝑎𝑙 \ 𝑑𝑒𝑙 :
23: (𝑚′ ∈ 𝑓 𝑖𝑛𝑎𝑙 ∧ 𝑓 𝑖𝑛𝑎𝑙 [𝑚] < 𝑓 𝑖𝑛𝑎𝑙 [𝑚′]) ∨
24: (𝑓 𝑖𝑛𝑎𝑙 [𝑚] < 𝑙𝑜𝑐𝑎𝑙 [𝑚′]) then
25: 𝑑𝑒𝑙 ← 𝑑𝑒𝑙 ∪ {𝑚}
26: deliver(𝑚)

any messages 𝑝 will deliver after𝑚 (intuitively, this holds

because logical clocks are monotonically increasing).

The complete protocol is shown in Algorithm 1 (ignoring the

extensions in gray). Figure 3 (left) shows an example execution

of the algorithm, where two clients 𝑎 and 𝑏 multicast messages𝑚

and𝑚′ respectively, with𝑚.𝑑𝑠𝑡 = {𝑃𝑥 , 𝑃𝑦} and𝑚′.𝑑𝑠𝑡 = {𝑃𝑥 , 𝑃𝑧 }.
Initially, message𝑚 is sent to its destinations and is assigned the

local timestamps 1 (from 𝑃𝑥 ) and 5 (from 𝑃𝑦 ). As soon as 𝑃𝑦 receives
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the local timestamp from 𝑃𝑥 , it knows the final timestamp of𝑚 is 5.

𝑃𝑦 updates its logical clock to 5 and can immediately deliver𝑚: any

new messages will be assigned a higher local timestamp at 𝑃𝑦 . 𝑃𝑥 ,

on the other hand, cannot deliver𝑚 immediately after it receives

the local timestamp from 𝑃𝑦 : in the mean time it assigned a local

timestamp of 2 to𝑚′, and must wait for the final timestamp of𝑚′

before it knows which of the two messages must be delivered first.

4.2 Extending Skeen’s algorithm to ensure
atomic global order

The execution in Figure 3 (left) demonstrates that Skeen’s algorithm

does not ensure atomic global order. Even though𝑚′ is multicast

after𝑚 is delivered at partition 𝑃𝑦 , in real-time, we have𝑚′ ≺ 𝑚
at 𝑃𝑥 .

We modify Skeen’s algorithm to ensure atomic global order by

including one extra property that needs to be satisfied: (iii) a process

can only deliver a message with final timestamp 𝑡𝑠 once it knows

that every destination in𝑚.𝑑𝑠𝑡 will not assign a local timestamp

smaller than or equal to 𝑡𝑠 . If (iii) is satisfied, once𝑚 is delivered

with final timestamp 𝑡𝑠 by some process, no new message𝑚′ such
that𝑚.𝑑𝑠𝑡 ∩𝑚′.𝑑𝑠𝑡 ≠ ∅ can be assigned a final timestamp smaller

than 𝑡𝑠 . The property is ensured by adding one extra message

exchange between destinations. Once a process decides on the final

timestamp of message𝑚, after updating its clock if needed, it sends

an acknowledgement to each other process in𝑚.𝑑𝑠𝑡 . A process can

only deliver𝑚 once it receives an acknowledgement from every

other process in𝑚.𝑑𝑠𝑡 . The additions to the protocol are shown in

gray in Algorithm 1.

Figure 3 (right) shows a similar execution to the one in Figure 3

(left), but with the extended protocol. Partition 𝑃𝑦 cannot deliver𝑚

at the moment it decides on the final timestamp: it must wait for 𝑃𝑥
to acknowledge it. Since 𝑃𝑥 timestamps𝑚′ before it acknowledges
𝑚, the delivery of𝑚 at 𝑃𝑦 is delayed to a point after the multicast

of𝑚′. Thus,𝑚′ ≺𝑚 does not create a cycle.

We now argue that the extended Skeen’s protocol satisfies atomic

global order. Let𝑚 and𝑚′ be twomessages such that𝑚′ is multicast

after𝑚 is delivered at some destination 𝑃 . Furthermore, assume for

a contradiction that there is some destination in common, 𝑃 ′, that
delivers𝑚′ before it delivers𝑚. When𝑚 is delivered at 𝑃 , from the

algorithm, it must have received an ack for𝑚 from 𝑃 ′. Thus, 𝑃 ′

must know the final timestamp 𝑡𝑠 of𝑚, and must have advanced

its logical clock past 𝑡𝑠 . Since the ⟨start,𝑚′⟩ message arrives at

𝑃 ′ after that point, it follows that the local timestamp assigned to

𝑚′ at 𝑃 ′, and consequently its final timestamp 𝑡𝑠 ′, must be larger

than 𝑡𝑠 . But since 𝑃 ′ delivers𝑚 before𝑚′, we have that 𝑡𝑠 < 𝑡𝑠 ′, a
contradiction.

Section 5.2 discusses several fault-tolerant atomic multicast pro-

tocols that are derived from Skeen’s protocol [8, 15, 16, 30, 32]. It is

our understanding that the here proposed extension can easily be

applied to these protocols as well.

5 RELATEDWORK
We organize the related work from different perspectives. First we

briefly comment on the existing atomic multicast properties and the

here proposed atomic global order.We then examine existing atomic

multicast protocols and discuss whether they satisfy the property or

not. Atomic global order targets systems that aim at linearizability,

so we followwith a discussion about the consistency level of current

partitioned SMR and partitioned transactional systems.

5.1 Atomic multicast properties
The functionality and semantics of an atomic broadcast or multicast

protocol is defined by a set of properties (i.e., validity, agreement,

integrity and order) that establish relations on the occurrence of its

primitives in any given run of the protocol. Different applications

may have different requirements, and these properties can be made

stronger or weaker depending on the need of the application. Many

protocols have been proposed in the literature, relying on different

assumptions and satisfying different sets of properties [11]. Atomic

global order differs from previously proposed ordering properties

in that (i) it relates delivery and multicast events and (ii) it relates

them in real-time. As previously shown, atomic global order al-

lows partitioned systems to provide linearizability without further

coordination among processes.

5.2 Atomic multicast protocols
We focus on atomic multicast protocols based on destination agree-

ment [11]. This is the class of protocols in which the order of mes-

sages results from agreement between the destination processes.

We further divide these protocols in three classes: timestamp based,

overlay based and deterministic merge based.

Timestamp based. In these algorithms, processes first agree on

the assignment of message timestamps and then deliver messages

in timestamp order. Every protocol discussed here is genuine, and

employs a timestamping scheme similar to Skeen’s, discussed in

detail in Section 4.1.

The first protocol extending Skeen’s protocol to be fault-tolerant

by using consensus inside each destination group was presented in

[15]. Each group acts as a process from Skeen’s protocol, and relies

on consensus to decide on timestamp proposals and advance the

logical clock. Messages can be delivered in 6 communication steps.

In [32], a similar protocol is proposed with optimizations to speed

up delivery in specific circumstances.

In Scalatom [30], instead of using consensus inside each destina-

tion group to decide on timestamp proposals, a single consensus

instance is executed among all destination processes. It can deliver

messages in 6 communication steps. Scalatom also proposes and

satisfies the additional property of message size minimality: pro-
tocol messages should have size proportional to the number of

destination groups. We note that all algorithms discussed here also

satisfy the property.

FastCast [8] proposes the use of stable leaders and an optimistic

execution path that can deliver messages in 4 communication steps,

in the best case.

Instead of using consensus as a black-box, White-Box Atomic

Multicast [16] weaves Skeen’s timestamping scheme and Paxos

into a unified protocol. The protocol is primary-based, and can

deliver messages in 3 communication steps at group leaders, in the

best case. Each group leader is responsible for assigning the local

timestamp for its group, and decides when a message is safe for

delivery.
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Figure 3: An execution showing that Skeen’s atomic multicast violates atomic global order (left) and the extended algorithm
that guarantees atomic global order (right).

RamCast [23] is a primary-based protocol that achieves high

throughput and low latency through its use of Remote Direct Mem-

ory Access (RDMA). It combines ideas from Skeen and Protected

Memory Paxos [1].

Overlay based. These algorithms rely on a predefined topology

to propagate messages and to ensure atomic multicast properties.

In [12], a genuine atomic multicast protocol is proposed that uses

a total order of groups as an overlay. A message𝑚 that needs to be

multicast is initially sent to one group in𝑚.𝑑𝑠𝑡 . When the group

receives 𝑚, consensus is used to order and deliver 𝑚 inside the

group, then𝑚 is forwarded to the next group in𝑚.𝑑𝑠𝑡 (according

to the total order of groups). A group that delivers𝑚 can only order

the next message once it knows𝑚 is ordered in all of𝑚.𝑑𝑠𝑡 , after it

receives an end message from the last group in𝑚.𝑑𝑠𝑡 .

Byzcast [7] is a byzantine fault-tolerant atomic multicast that

arranges groups in a tree overlay. A message𝑚 enters the overlay

in the lowest common ancestor of groups in𝑚.𝑑𝑠𝑡 . A group that

receives𝑚 orders it and then propagates it down the tree, until all

groups in𝑚.𝑑𝑠𝑡 are reached. Byzcast may be considered partially

genuine: delivering a message addressed to multiple groups may

involve intermediary groups not part of the destination set.

Deterministic merge based. In these algorithms, each destination

process applies a deterministic merge procedure to decide on the

delivery order of received messages.

In [32], processes execute an unbounded sequence of rounds.

Consensus is used inside each group to determine the set of mes-

sages proposed by the group in a given round. At the end of each

round, processes gather messages from all groups and then deliver

them in some deterministic order. The protocol is non-genuine.

Multi-Ring Paxos [26] builds on multiple instances of Ring Paxos

[27], a ring-based consensus protocol. It provides guarantees akin

to atomic multicast, but with a slightly different interface. Messages

can only be sent to a single group, but receivers can subscribe to

more than one group. Each group totally orders its messages and

receivers use a deterministic merge to ensure a partial ordering of

deliveries from the groups it subscribes to. Ridge [3] improves on

Multi-Ring Paxos by reducing the latency inside each group and

utilizing a timestamp-based merge procedure. Both protocols are

non-genuine.

5.3 Existing algorithms and atomic global order
In the following, we discuss why, out of all surveyed protocols, only

the round-based protocol described in [32] satisfies atomic global

order.

Timestamp based. As shown in Section 4.1, Skeen’s algorithm

does not satisfy atomic global order. By the same argument, all of

the algorithms that more closely match its execution (i.e., [8, 15, 32])

do not satisfy the property either.

In Scalatom [30], while a single instance of consensus is executed

among groups in 𝑚.𝑑𝑠𝑡 , a group’s clock is only updated after it

handles the decision for𝑚’s timestamp. It is possible for a group in

𝑚.𝑑𝑠𝑡 to propose a smaller timestamp even after some other group

in𝑚.𝑑𝑠𝑡 delivers𝑚.

In the primary-based algorithms (i.e., [16, 23]), at the time a

group leader delivers a message𝑚 with final timestamp 𝑡𝑠 , other

group leaders in𝑚.𝑑𝑠𝑡 may still propose local timestamps smaller

than 𝑡𝑠 .

Overlay based. In the protocols relying on an overlay for par-

tial order, messages may be ordered by groups in sequence, ei-

ther following a total order [12] or down a tree [7]. Consider two

messages𝑚 and𝑚′ and groups 𝑔 and ℎ such that 𝑔 ∈ 𝑚.𝑑𝑠𝑡 and

ℎ ∈ 𝑚.𝑑𝑠𝑡 ∩𝑚′.𝑑𝑠𝑡 , and 𝑔 is earlier than ℎ in the overlay. If𝑚′ is
multicast after𝑚 is delivered by 𝑔, but before𝑚 its propagated to

ℎ, ℎ may deliver𝑚′ before𝑚, violating atomic global order.

Deterministic merge based. For Multi-Ring Paxos [26] and Ridge

[3], consider the following case. Twomessages𝑚 and𝑚′ are ordered
by groups 𝑔 and ℎ respectively. A receiver subscribing only to 𝑔

delivers𝑚, and only then𝑚′ is multicast to ℎ. The proposed merge

procedures do not prevent another receiver, subscribing to both 𝑔

and ℎ, from delivering𝑚′ before𝑚, violating atomic global order.

Out of all surveyed protocols, only the non-genuine, round-based

protocol described in [32] satisfies atomic global order. If some

process delivers a message𝑚, it follows that the round to which𝑚
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belongs is closed in all groups. Any message multicast after that

must belong to some later round, ensuring it is delivered after𝑚.

5.4 Partitioned SMR
The quest for scalable SMR very often involves partitioning tech-

niques, where handling multi-partition operations (MPOs) effi-

ciently is one of the main challenges.

Scalable State Machine Replication (S-SMR) [4] is an approach

that achieves scalable throughput and linearizability without con-

straining service commands or adding additional complexity to their

implementation. S-SMR partitions the service state and relies on an

atomic multicast primitive to consistently order commands within

and across partitions. It is shown that simply ordering commands

consistently across partitions is not enough to ensure linearizability

in partitioned state machine replication. To ensure linearizability,

S-SMR implements execution atomicity, a property that prevents

invalid command interleavings. Partitions involved in the same op-

eration signal each other such that all of them finish the operation

before signaling the client (see also Figure 2).

In [25], the authors propose a genuine protocol based on Skeen’s

total order multicast [5] to order MPOs. The inter-partition coor-

dination for MPOs is removed from the critical execution path of

operations. This is achieved by postponing the execution of MPOs

to a future time when their ordering has already been agreed across

the partitions involved. For this, a new consensus interface and

properties are proposed. Operations are executed in rounds. The

proposal primitive allows to propose operations with the rounds

intended to execute them. While single partition operations can

be ordered quickly and execute soon, MPOs have to go through

an inter-partition procedure. Scheduling MPOs for future rounds

allows other operations to execute while the MPOs are being or-

dered. To ensure linearizability, when a process starts executing an

MPO, it notifies all involved partitions. A process only replies to

the client after having received this notification from all involved

partitions. This solution is similar to the one presented in [4] and

ensures that the reply externalized to the client is consistent with

linearizability.

DynaStar [24] is a partitioned SMR solution that provides dy-

namic state partitioning to handle workloads with varying access

patterns. Data can be moved between partitions, and a location ora-

cle is used to monitor the workload and to re-calculate an optimized

partitioning on demand. In DynaStar there is no multi-partition

execution of commands. If a command accesses multiple partitions,

all data is temporarily moved to a single partition that is then

responsible for executing the command.

Tempo [14] is a leaderless partitioned SMR protocol that relies

on a timestamping scheme similar to Skeen’s. Each command has a

coordinator replica that communicates with the destination replicas

to replicate the command and to agree on its timestamp. To ensure

linearizability, replicas exchange information about each timestamp

they assign and will only execute a command once every command

with a lower timestamp is known.

5.5 Transactional systems
As in SMR approaches, distributed transactional systems also rely

on data partitioning for scalability. Instead of relying on an atomic

multicast abstraction to partially order requests, these systems

typically employ ad hoc protocols to coordinate multi-partition

operations.

P-Store [34] offers a partially replicated key-value store for wide

area networks with one-copy serializability semantics. Each trans-

action proceeds with optimistic reads, storing on its read-set the

data and its version. Upon certification, needed for global and up-

date transactions, it is checked whether the transaction observed a

valid view of the database. The certification protocols proposed rely

on genuine atomic multicast. Each site that executes the transaction

has to certify it. If it cannot, then the whole transaction is aborted.

To speed up the termination of transactions, a parallel certification

protocol for independent transactions is also proposed.

Spanner [9] is a globally distributed database that shards data

across many sets of Paxos state machines in datacenters spread

all over the world. A Spanner instantiation is called a universe. A
universe has zones, which are units of physical isolation. Data can

be partitioned into zones and moved across them. A zone hosts up

to several thousands of spanservers. Each spanserver belongs to a

replication group, using Paxos, and implements a state machine

on top of each tablet it hosts. Each spanserver supports between

100 and a 1000 tablets. If a transaction touches tablets within a

Paxos group, the spanserver has ordering and locking mechanisms

to ensure linearizability. In the case of a distributed transaction (i.e.

involving several Paxos groups), there is a leader replica at each

group implementing a transaction manager to cope with it. These

managers coordinate to perform two-phase commit. Commits are

assigned globally meaningful timestamps that reflect serialization

order, which additionally satisfies external consistency and thus

linearizability.

Granola [10] is an architecture to coordinate transactions, allow-

ing to build reliable distributed storage applications and supporting

serializability across all operations. The main roles involved are

clients and repositories. Clients submit transactions to reposito-

ries. Repositories coordinate to ensure strong consistency. Each

repository is implemented by a set of replicas using the state ma-

chine replication approach. Granola works with one-round transac-

tions, i.e., transactions that do not allow interactions with the client.

Transactions are assigned a timestamp at repositories, defining a

position in the global serial order. Before committing, reposito-

ries ensure that they all agree on the timestamp. There are three

types of transactions: (i) single-repository transactions, (ii) inde-

pendent distributed transactions, and (iii) coordinated distributed

transactions. Single repository transactions are similar to single-

node storage processing. Independent distributed transactions, a

feature introduced by Granola, are used when the distributed trans-

actions can execute independently at repositories (e.g., distributed

read, distributed update on replicated data). Using timestamps, they

are ordered with respect to other transactions without locking or

conflicts. If other transactions may lock items updated by an inde-

pendent transaction, then a conflict is raised and the transaction

has to be tried later by the client. Coordinated transactions require

locking to support concurrency and require participants to agree

whether to commit or abort the transaction.

Calvin [35] is another transaction coordination protocol devel-

oped in parallel with Granola. Calvin provides logical equivalence

to a serial order of transactions, i.e., serializability. It is similar in
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functionality to [10], but eliminates the need for a commit phase for

distributed transactions. Calvin is organized in replicas, which are

partitioned. Replicas have the same partitions and each partition

runs three layers: (i) sequencer; (ii) scheduler; and (iii) storage. The

(i) sequencer builds a global order of transactions being submitted

across partitions, organizing them in batches per epoch (i.e., slices of

10 milliseconds) that are sent to the (ii) schedulers of the partitions

involved. Calvin transactions declare the read/write items accessed

such that the sequencer and the scheduler ensure that transactions

follow a deterministic execution that eliminates concurrency con-

flicts. With this, transactions are executed to completion at the (iii)

storage layer (i.e., any storage engine supporting a CRUD interface).

A multi-partition transaction executes at all involved partitions: the

needed values are read and then exchanged so that writes can be

computed. If a node fails, it is assumed a replica node is available.

Since node failures are dealt with and there are no concurrency

conflicts due to sequencing and scheduling, transactions always

commit, eliminating the need for distributed commit protocols. The

absence of distributed commit protocols eliminates the need of

locks. As a result, the contention footprint is considerably reduced,

this being the key aspect to Calvin’s scalability.

6 FINAL REMARKS
Partitioned state machine replication extends classic state machine

replication (SMR) with the notion of state partitioning (or sharding).

In both approaches, clients propagate requests to the replicas, which

execute the requests sequentially in a consistent order. In the case

of SMR, every request concerns all replicas, as each replica stores

the full application state. In partitioned SMR, the application state

is divided into partitions, and each request accesses data in one or

more partitions. Clients must propagate requests to the partitions

concerned by the data accessed in the request.

Many proposals that adopt the SMR model use an atomic broad-

cast primitive to order requests (e.g., [28, 29]). In the case of par-

titioned SMR, atomic multicast is more appropriate than atomic

broadcast to propagate requests to replicas consistently (e.g., [34])

since propagating all requests to all replicas defeats the purpose of

data partitioning. One can observe that as partitioned SMR gener-

alizes classic SMR, atomic multicast generalizes atomic broadcast.

Despite this analogy, there is an “asymmetry" in how the ordering

abstractions are used in the replication approaches. In SMR, after

delivering a request, replicas execute the request and reply to the

client. No coordination between replicas is needed as part of the

execution of a request. In partitioned SMR, as part of the execution

of a multi-partition request, replicas in the involved partitions must

coordinate to ensure linearizability. We show in the paper that this

coordination is needed because atomic multicast with global total

order does not capture real-time dependencies between requests.

When equipped with atomic multicast that ensures atomic global

order, replica coordination is not necessary.

Finally, we note that atomic global order is not minimal, in that

it rules out executions that do ensure linearizability. For example,

the execution depicted in Figure 2 (right) while linearizable is not

allowed by atomic global order. To see why, notice that since request

𝑟 (0, 1) is delivered at 𝑃0 before𝑤 (1, 𝑣1) is multicast by client 𝑐 , from

atomic global order, 𝑟 (0, 1) ≺ 𝑤 (1, 𝑣1). Therefore, at 𝑃1, 𝑤 (1, 𝑣1)

cannot be delivered before 𝑟 (0, 1) (i.e.,𝑤 (1, 𝑣1) ≺ 𝑟 (0, 1)) since this
would create a cycle. One open question is whether one can come

up with a property stronger than global total order (i.e., to prevent

replica coordination) but weaker than atomic global order (i.e., to

accept linearizable executions currently ruled out by atomic global

order).
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