
Workshop Suíça–Brasil: Um Olhar Atual sobre Sistemas Distribuídos:

Da Pesquisa à Aplicação no Mundo Real

15 e 16 de abril de 2025

Composing State

Machine Replicas
Odorico Machado Mendizabal

Breaking the Ice

2025201820162011200720062003

Bachelor's Degree

in Computer

Engineering

(FURG)

PhD in Computer

Science

To be continued…SW Developer (HP)

SW Performance

Analyst (Dell)

Master's Degree in

Computer Science

(PUCRS)

Assistant

Professor at FURG

Assistant

Professor at UFSC

Research Interest and Recent Results

Paxos variations

High throughput Paxos: ISS Paxos

Consensus Protocols

Parallel SMR

SMR composition

State Machine Replication

Speed up recovery

Log Compaction

Low Overhead Checkpointing/Restore

C/R as a service

Durability Approaches

Repartitioning approaches

Data Balancing

Other approaches

State Machine Replication

A set of servers behaves as replicated state machines

- Replicas start in the same initial state

- Service operations are deterministic

Clients issue commands to every replica through a consensus or atomic broadcast

protocol:

- correct replicas receive every command

- if a replica processes a command c1 before c2, then no replica process c2 before c1

State Machine Replication

State Machine Replication – Applications

Apache Zookeeper

Open source server for highly
reliable distributed coordination

Google File System

Distributed file system that

provides efficient and reliable data

access

Key-value store services

Ex. etcd, used to replicate

metadata on Kubernetes cluster

managers

Online services

Google Chubby

Lock service, used to help

coordination in distributed

environment using locking

semantics

Over the past decades, SMR has

gained popularity, leading to

extensive research that has

enhanced its resilience, performance,

and scalability. However, one aspect

not yet addressed in SMR is service

composition

This talk

SMR Research
A (very) quick view of approaches over the years

SMR – other approaches

Adding protocols capable of tolerating arbitrary faults

Byzantine faults

Aimed to improve resilience

Recovery and Reconfiguration

Independent requests executed in parallel

Parallel SMR

Composing State Machine Replication (CSMR)

Build services by combining separate instances of

SMR

● Microservice-based systems

● Flexible and loosely coupled solutions

● Development in a modular way

SMR 1

SMR 2
.
.
.

SMR n

SMR 1 – Lock service

boolean acquire (string key)

boolean release (string key)

CSMR – Selected use cases

SMR 2 – key-value store

string get(string key)

void put(string key, string value)

SMR 3 – Logging service

void append(Object entry)

Object[] retrieve(int first, int last)

boolean truncate(int index)

SMR Formalization: Definitions

● Replicated service

● Operations (with arguments)

● Execution

● Output

SMR Formalization: Definitions

O = {op1, op2}

SMR Formalization: Definitions

O = {op1, op2}

M = {s1, s2} where |M| = f + 1

SMR Formalization: Definitions

O = {op1, op2}

M = {s1, s2} where |M| = f + 1

R = O x M

SMR Formalization: Definitions

● Definition 1 - Replicated service

○ Example: SMR 2 - Key-value store

SMR 2 - Key-value store

O = {get, put}

SMR Formalization: Definitions

● Definition 1 - Replicated service

○ Example: SMR 2 - Key-value store

SMR 2 - Key-value store

O = {get, put}

s1 s2

Replicas

M = {s1, s2}

SMR Formalization: Definitions

● Definition 1 - Replicated service

○ Example: SMR 2 - Key-value store

SMR 2 - Key-value store

O = {get, put}

s1 s2

Replicas

M = {s1, s2}

Replicated Service

R = {(get, s1), (get, s2), (put, s1), (put, s2)}

SMR Formalization: Definitions

● Definition 2 - Operations with arguments

O = {op1, op2}

SMR Formalization: Definitions

● Definition 2 - Operations with arguments

O = {op1, op2}

A = (args1, args2)

SMR Formalization: Definitions

● Definition 2 - Operations with arguments

O = {op1, op2}

A = (args1, args2)

𝒪 = O × A

SMR Formalization: Definitions

● Definition 2 - Operations with arguments

○ Example: SMR 2 - Key-value store

SMR 2 - Key-value store

O = {get, put}

SMR Formalization: Definitions

● Definition 2 - Operations with arguments

○ Example: SMR 2 - Key-value store

SMR 2 - Key-value store

O = {get, put}

Arguments

A = {a, b, ..., z}

A* set of all strings over A

Operations with arguments

𝒪get = {get} x A*

(get, “firstkey”); (get, “secondkey”)

SMR Formalization: Definitions

● Definition 3 - Replicated service with arguments

O = {op1, op2}

A = (args1, args2)

𝒪 = O × A

M = {s1, s2}

R = 𝒪 × M

SMR Formalization: Definitions

● Definition 4 – Execution

● Definition 5 – Output

𝒪 = O × A

U

E ⊆ 𝒪 × U

SMR Formalization: Example

SMR 2 - Key-value store

O = {get, put}

Arguments

A = {a, b, ..., z}

A* set of all strings over A

Operations with arguments

𝒪get = {get} x A*

(get, “firstkey”); (get, “secondkey”)

Execution and output

E ⊆ 𝒪 × U

E ⊆ ({get} x A*) x A*

(get, “firstkey”) x (“firstvalue”)

Composing SMR
A new perspective

Composing State Machine Replication (CSMR)

Literature

Composition can be a

powerful strategy

Different operations

Now there is no longer any

requirement for all replicas to

perform the same operations

Extending a service

Incorporating additional

functionalities

Existing SMR

Add new features

combining different SMRs

CSMR: Definitions

● Definition 6 - Replication set

{s1, s3}

R(x) = {si ∈ M : (x , si) ∈ R}

CSMR: Definitions

● Definition 7 - Replication set with arguments

● R(x) = {si ∈ M : ((x, a), si) ∈ R, with a ∈ A}

O

A
𝒪 = O × A

CSMR: Definitions

● Definition 8 - Composable replicated service

O

M

R ⊆ O × M

CSMR: Definitions

● Definition 9 - Composition

CSMR: Definitions

● Definition 9 - Composition

O1

M1

R1 ⊆ O1 × M1

O2

M2

R2 ⊆ O2 × M2

CSMR: Definitions

● Definition 9 - Composition

O1

M1

R1 ⊆ O1 × M1

O2

M2

R2 ⊆ O2 × M2

R = R1 U R2

Composing strategies

● Adding SMR operations

● Extending SMR operations’ execution

● Argument partition

Composing strategies – Adding operations

Composing strategies – Adding operations

SMR 2 – Key-value store

O = {get, put}

SMR 1 – Lock service

O = {acquire, release}

+

Composing strategies – Extending operations execution

SMR 2 – Key-value store

O = {get, put}

SMR 3 – Logging Service

O = {append, retrieve, truncate}

+

Composing strategies – Extending operations execution

● Example: Key-value store with logging

SMR 2 - Key-value store

SMR 3 - Logging service
PROXY

Client

put (“k”,
“v”)

put (“k”, “v”)

append(put (“k”, “v”))

Composing strategies – Argument partition

SMR 2 – Key-value store

O = {get, put}, A = {Aa , Aa x A}

SMR 2 – key-value store

O = {get, put}, A = {Ab , Ab x A}

+

Composing strategies – Argument partition

PROXY
Client

put (“a”, “v”)

get (“b”)

A

B

Z

.

.

.

put (“a”, “v”)

get (“b”)

Final remarks

● CSMR enables the construction of more complex applications

○ Still, preserving fault tolerance

● Modular approach encourages development of loosely coupled architectures

○ Fits well to microservices and cloud applications

● Some of the composing strategies resemble previous contributions in the literature

○ Bezerra et al. Scalable state-machine replication (DSN, 2014)

○ Xavier et al. Scalable and decoupled logging for state machine replication (SBRC, 2021)

Future work

● Define an RPC API for client requests invocation

● Define a declarative configuration for CSMR (YAML file)

● Implement the Proxy

○ Many challenges

● Propose new use cases

● Do you have any ideas? ☺

THANK YOU
Composing State Machine Replicas

Caroline Martins Alves
caroline.martins@posgrad.ufsc.br

Thaís Bardini Idalino
thais.bardini@ufsc.br
https://thaisidalino.github.io/

Odorico Machado Mendizabal
odorico.mendizabal@ufsc.br
https://www.inf.ufsc.br/~odorico.mendizabal/

Contacts:

mailto:thais.bardini@ufsc.br

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

