
Alysson Bessani

Cloud-of-Clouds Storage:
from Theory to Production

Research in Consensus-based Replication

• Past: BFT-SMaRt, Spinning, MinBFT, BFT-CUP, WHEAT, AWARE, …

• I’m currently interested in the following topics:
• Simple blockchain consensus protocols

• Do you know Streamlet?
• Confidential replicated services

• Secret sharing; Oblivious RAM; Multi-Party Computation
• Wide-area Byzantine-resilient replication

• Lightspeed consensus; probabilistic protocols

16/4/25 WSDC 2025 3

ProBFT [PODC’24]

• New probabilistic protocol
• PBFT with probabilistic quorums of

size O(𝑛) (instead of O(n))
• Requires a limited network scheduler
• Liveness (Termination) guaranteed

with probability 1
• Safety (Agreement) guaranteed with

probability 1 - exp(-Q(𝑛))

• The protocol itself is very simple
• Its analysis is quite complicated

4

PODC ’24, June 17–21, 2024, Nantes, France Avelãs et al.

to intersect in at least one correct replica. Although e�ective, en-
suring deterministic quorum overlaps poses inherent challenges in
achieving both resource e�ciency and high performance. Some pro-
tocols (e.g., PBFT) approach this con�ict by opting for low latency
and applying message-exchange patterns with quadratic message
complexity. However, this can be prohibitively expensive, espe-
cially for BFT systems with a large number of replicas. Other proto-
cols (e.g., HotStu�) aim at reducing message complexity at the cost
of adding extra communication steps. Unfortunately, this approach
leads to increased end-to-end response times.

In practice, however, implementing punishment mechanisms,
like those used in existing Proof-of-Stake blockchains (e.g., [8, 12]),
can make it costly for Byzantine participants to deviate from its
speci�cation, knowing that their actions may lead to detection and
subsequent punishment. Besides, adversaries are not as powerful as
the ones assumed by protocols following the pessimistic approach.
Accordingly, in many real-world applications, it is su�cient to as-
sume a static corruption adversary, which chooses a corruption
strategy at the beginning of the execution of a consensus instance,
as well as an adversarial scheduling that manipulates the delivery
time of messages independently of the sender’s identi�er and if it is
faulty or not. Given this, ensuring safety and liveness with a high
probability might be acceptable in many practical scenarios. This
paper describes a new protocol for these less pessimistic practical
scenarios that requires less message exchanges and still keeps opti-
mal latency. This protocol is called P��BFT (Probabilistic Byzantine
Fault Tolerance).

Overview of P��BFT. P��BFT is a BFT leader-based consensus
protocol that operates in permissioned partially synchronous sys-
tems and probabilistically ensures liveness and safety properties.
It achieves the optimal good-case latency of three communica-
tion steps [1], just like PBFT, albeit with a message complexity of
$ (=p=). Figure 1 compares P��BFT, PBFT, and HotStu� in terms
of the number of communication steps and exchanged messages
for di�erent numbers of replicas. P��BFT’s resource e�ciency and
scalability improvements are enabled by a unique combination of
building blocks that are usually not employed in traditional BFT
protocols, including probabilistic quorum systems [36], a mecha-
nism to con�gure the degree of communication redundancy, and a
veri�able random function (VRF) [37].

Like PBFT and HotStu�, P��BFT operates in a sequence of views,
each having a designated leader responsible for proposing a value.
The protocol consists of two modes of execution – normal case and
view-change. The normal case starts when the leader broadcasts
its proposal through a P������ message. Since the leader might
be Byzantine and send distinct proposals to di�erent replicas, non-
Byzantine replicas need to communicate with each other to check
that they received the same proposal. With this aim, upon receiving
a P������ message, a correct replica multicasts the proposal to a
sample of > ⇥ @ distinct replicas taken uniformly at random from
the set of replicas, where @ = $ (p=) and > > 1 is a real constant.
Upon receiving P������messages from a probabilistic quorumwith
size @, a correct replica multicasts a C����� message to another
random sample composed of > ⇥ @ distinct replicas. Upon receiving
C�����messages from a probabilistic quorumwith size @, a correct
replica decides on the proposed value.

(a) Message pattern and number of communication steps.

100 150 200 250 300 350 400
n

0

50000

100000

150000

200000

250000

300000

#
ex

ch
an

ge
d

m
es

sa
ge

s

PBFT

HotStu�

ProBFT – o = 1.6

ProBFT – o = 1.7

ProBFT – o = 1.8

(b) Number of exchanged messages.

Figure 1: Comparing the normal case of three consensus pro-
tocols – PBFT, P��BFT, and HotStu� – regarding the number
of communication steps and message complexity.

P��BFT’s normal case execution relies on probabilistic quorums
to solve consensus. That is, in contrast to traditional BFT protocols
(e.g., PBFT, HotStu�, and randomized protocols like [10, 40]), we
abandon the requirement of quorums strictly having to intersect
and instead only aim at quorums overlapping with high probability.
As a key bene�t, this strategy enables us to keep the number of
communication steps at a minimum while signi�cantly reducing
quorum sizes, thereby improving resource consumption and scala-
bility. Speci�cally, for a system with = replicas, P��BFT employs
probabilistic quorums of size @ = ;

p
=, with ; � 1 being a con�g-

urable, typically small constant [36]. For example, for ; = 2 and
= = 100, a replica can make progress after receiving 20 matching
messages from di�erent replicas, which is a signi�cant reduction
when compared with the 67 messages necessary in PBFT.

Since a comparably small number of messages is su�cient to
advance a phase in P��BFT, to o�er resilience against Byzantine
behavior, it is crucial to prevent faulty replicas from manipulating
the decisions in probabilistic quorums (e.g., by �ooding the system

16/4/25 WSDC 2025

Consensus-free Replication

16/4/25 WSDC 2025 5

Clouds for Data Storage

• According to estimates, 400 million of TBs of data are generated daily
• Data from diverse sources with different storage requirements
• Security and regulatory compliance (e.g., GDPR, HIPAA)

• Cloud storage services store a large portion of this data
• Their scalability, virtually-infinite capacity, and diversified offer are incentives

for organizations to move their data to the cloud
• It is estimated that 80% of companies will move their operations from local

datacenters to the cloud by 2025

• Problem: although generally more reliable than local infrastructures,
clouds are frequently affected by failures and security incidents

16/4/25 WSDC 2025 6

16/4/25 WSDC 2025 7

Cloud-of-Clouds Storage

• Use of multiple (independent) cloud providers to store data
• Cloud-of-clouds systems survive faults if no more than a fraction of

the underlying clouds are affected at the same time
• They also address the vendor lock-in issue

• Fundamentally changes the cloud usage trust assumption:
• 3rd-party trust: a cloud application works if its cloud provider is correct
• Distributed trust: a cloud application works if no more than f out-of n cloud

providers are faulty

16/4/25 WSDC 2025 9

Cloud-of-Clouds Storage

• Two challenges:
1. Appropriate middleware for dealing with cloud diversity
2. Known replication techniques are not easily applied to this model

• Unless one wants to implement a replicated system with replicas deployed in different
cloud providers. This is not our target!

• This talk: how to address these challenges
• (A bit of) Theory: fundamental models and algorithms
• Practice: some practical systems and a commercial product

16/4/25 WSDC 2025 10

Outline

• Introduction
• Theory

• Model
• Background
• Storage Constructions

• Practice
• Two Cloud-of-Clouds File Systems (SCFS, Charon)
• A commercial product (Vawlt)

• Conclusions

16/4/25 WSDC 2025 11

Theory

16/4/25 WSDC 2025 12

System Model

• Unconstrained set of clients and n cloud providers (clouds)
• Each cloud implements a service represented by a base object

• Base objects have a well-defined interface and supports access control

• Clients interact with base objects/clouds by invoking operations
• Interactions are asynchronous, i.e., the response time is not bounded

• An unbounded number of clients and up to f clouds can experience
arbitrary (or Byzantine) failures
• Faulty clients can jeopardize the security of the data they have access

16/4/25 WSDC 2025 13

Background: Byzantine Quorum Systems

• A set of subsets (quorums) of n
clouds satisfying:
• Consistency: every two quorums

intersect in at least one correct cloud
• Availability: there is at least one

quorum of correct clouds

• Dissemination quorum systems:
• n > 3f (e.g., n = 3f+1)
• q = ⌈(n+f+1)/2⌉ (e.g., q = 2f+1)

Example n=4, f=1:

16/4/25 WSDC 2025 14

Q1

Quorums with q = 3 clouds
Intersections with at least f+1 = 2 clouds

Q2

Background: Erasure Code

• A type of error correction code
• Generate n coded blocks from a

file to be stored
• Any m of those blocks can recover

the file (we use m = f+1)
• The storage cost of this

technique is q/m instead of q
• Erasure codes can also be used

to ensure confidentiality, i.e.,
less than f+1 blocks reveal no
information about the value

• Example n=4, f=1:

16/4/25 WSDC 2025 15

Any m=2 can rebuild the data

Generate n=4 blocks 50% storage
overhead

Storage Abstractions

• Cloud storage services (e.g., AWS S3, Azure Blob Storage, Google
Cloud Storage) are fail-prone key-value stores (KVS)
• Using these base objects (KVSes), we build Byzantine fault-tolerant

registers and lease objects

16/4/25 WSDC 2025 16

KVS

KVS

KVS

KVS
Register

Storage Abstractions

Key-value store (the cloud)

• Stores <key, value> pairs
• Keys are unique

• Operations: put(k, v), get(k), list(),
and remove(k)
• Atomic and wait-free operations
• Operations return a real time clock

value of the cloud, which also
stores the time of the last put for
each key
• Cloud clocks do not need to be

synchronized, but drifts are bounded

Register (the multi-cloud)

• Store arbitrary values
• Operations: write(v), and read()
• Concurrency semantics: regular

• A read returns either the value
written in the last completed write or
the value being written concurrently

• Types of registers:
• Write-once
• Single-writer
• Multi-writer

16/4/25 WSDC 2025 17

Cloud-of-Clouds Constructions

• Write-Once Register
• Single-Writer Register
• Multi-Writer Register

• Lease Object

16/4/25 WSDC 2025 19

[OPODIS’16, IEEE TCC’21]

Single-Writer Register: Why does it work?

16/4/25 WSDC 2025 24

〈ts,c,h〉〈ts,c,h〉

WRITE READ

Write data → Write metadata Read metadata → Read data

When a data version is seen, the data content is available

Lease Object

• Lease object is important to support concurrency control
• I.e., avoid concurrent access to shared data

• We show a lease protocol on top of KVS objects
• It requires real-time timestamps from cloud providers on each interaction

• Base lease protocol:

16/4/25 WSDC 2025 26

list lease
tuples

write lease
tuple

list lease
tuples

If there’s no other valid
lease tuple, return

true, else return false
If a valid lease tuple
is seen, return false

Practice

16/4/25 WSDC 2025 29

DepSky

• A Java programming library for
using n cloud storage services
• Implements the single-writer

register algorithm with some
extensions
• Creation/destruction of registers
• Locking/unlocking

• Ensures confidentiality by
integrating erasure code with
secret sharing

16/4/25 WSDC 2025 30

[EuroSys’11, ACM TS’13]

SCFS (Shared Cloud-backed File System)

• A file system that makes transparent the use of cloud-of-clouds
• Separation of FS data and metadata on different (storage) systems
• Consistency-on-close semantics

16/4/25 WSDC 2025 31
8

Storage
clouds

Coordination
Service

Cloud storage

Cache

Cache

Cache

Lock
Service

Access
Control

Metadata

Computing
clouds SCFS

Agent

SCFS
Agent

SCFS
Agent

SCFS Architecture

Figure 5: SCFS architecture [22].

of writing everything to the cloud, as most providers let clients upload files for free as an
incentive to use their services. Consequently, no completed update is lost in case of a local
failure.

It is important to remark that the storage cloud(s) and the coordination service are
external services. SCFS can use any implementation of such services as long as they are
compatible (provide compliant interfaces, access control, and the required consistency).

Operation. As described before, a key innovation of SCFS is the ability to provide strongly
consistent storage over the eventually-consistent services o↵ered by clouds [65]. The ap-
proach requires two storage systems, one with limited capacity for maintaining metadata
and another to save the data itself. We call the metadata store a consistency anchor and re-
quire it to enforce some desired consistency guarantee S (e.g., linearizability [41]), while the
storage service may only o↵er eventual consistency. The objective is to provide a composite
storage system that satisfies S (e.g., the coordination service), even if the data is kept in a
weakly-consistent storage service (e.g., the cloud-of-clouds).

Figure 6 shows how this mechanism works in an example operation over a file stored on
SCFS. When a file “x” is open, it is read from the cloud. This is done in two steps: (1)
its metadata is read from the coordination service to obtain the exact name of the object
written in the clouds and its version number, and (2) fetch the object (i.e., the bytes of the
current version of the file) from the cloud-of-clouds using a modified version of DepSky,
which implements the read protocol of the write-once register (Algorithm 2) in which the
name of the register corresponds to the file id plus its version number. If the file was open
for writing, a lock is acquired for it. After that, any read and update are done in memory,
with an fsynch flushing the data to disk, just like in a normal file system. When the file
is closed, if it was updated, its contents are written to the cloud using the write protocol
described in Algorithm 2 and, after this write completes, the coordination service is updated
with the current version of the file and other metadata (e.g., new file size and modification
time), releasing the write lock on the file.

Notice that even if the storage clouds are weakly consistent, the fact we fetch the correct
version number of the file from a strongly-consistent coordination service allows the client
to ask the clouds for this particular version until it is read. If written by a correct client,
reading a file in this way always work because the coordination service was updated after

18

(Innovation #1)

Modular coordination

(Innovation #2)

Consistency anchor

(Innovation #3)

Near-POSIX interface
for CoC storage

[USENIX ATC’14]

Charon

• Address the limitations of SCFS
• Avoid custom servers in the cloud
• Deals with big files

• Data can be stored in diverse locations
• Employs three storage constructions

• Write-once registers to store file blocks
• Single-writer registers to store metadata

objects (which are updatable)
• Composite lease objects to lock

directories for a single writer

16/4/25 WSDC 2025 33

Site 1 Site 2

C
Cache

AC
Cache

Resilient Cloud-of-Clouds Storage

Data

B

Metadata
d1

d2A

B C D

CHARON CHARON

Public
Cloud Y

D

Public
Cloud X

Figure 7: Charon architecture [55].

Metadata management. All metadata is stored within namespace objects, which encap-
sulate the hierarchical structure of files and directories in a subdirectory tree. Charon uses
two types of namespaces: personal namespace (PNS) and shared namespace (SNS). A PNS
stores the metadata for all non-shared objects of a client, i.e., files and directories that can
only be accessed by their owner. Each client has only one associated PNS. On the other
hand, a client has access to as many SNSs as the shared folders it can access. Each shared
folder is associated with exactly one SNS, which is referenced in the PNSs of the clients
sharing it.

Although similar, personal and shared namespaces di↵er in the way the hashes of the
most recent versions of the files’ data chunks are stored. These hashes are primarily used to
validate the cached file blocks. In PNSs, these hashes are serialized together with the rest of
the files’ metadata before they are stored in the cloud. In the case of SNSs, the hashes are
stored in a separate Chunk Hashes (CH) object. This is done to decouple the read of these
hashes from the SNS object. A second key di↵erence between a PNS and an SNS is that
the latter is associated with a lease to coordinate concurrent write accesses between di↵erent
users, which must be acquired before any update is executed on a file or directory in the
namespace. Since each SNS is associated with one shared folder, a lease object is obtained
to coordinate concurrent write accesses on an entire shared folder.

Figure 8 depicts how a set of files relates to these namespaces. Files A and B are private
to their owners (Clients Y and X, respectively). File C is divided into two chunks and is
shared among these clients. Since files A and B are private, their metadata is kept in their
owners’ PNSs. In the case of file C, the reference to the file chunks is stored in SNS1.

Operation. Figure 9 illustrates what happens when Client X writes a file in an SNS while
Client Y performs a concurrent non-cached read. When writing, Client X first obtains a
lease over the entire SNS (step 1b). The system then enforces the read of the metadata and
CH objects (steps 2b and 3b) to ensure that the most up-to-date metadata is used. In step
4b, the client writes the file to its local cache. After this point, all the steps are executed

21

[IEEE TCC’21]

Cloud-of-Clouds Practical Usage

16/4/25 WSDC 2025 35

Difficulty #1
The user needs to choose the
n most fitting cloud services
for instantiating the system

Difficulty #2
The user needs to set up

accounts on all these clouds
and properly manage them

Difficulty #3
The system needs to be configured
to use the clouds to decrease costs

and improve performance

Vawlt

• Startup launched in 2018 offering a cloud-of-clouds storage platform
• At this point, it secured more than 3M euros from VC funds

16/4/25 WSDC 2025 36

Vawlt Security Model

• Vawlt server is a single point of trust
• If it is unavailable

• It is not possible to create or mount volumes

• If it is compromised
• The adversary may have access to cloud credentials of users' volumes
• He/she can access/modify/delete users’ data
• Confidentiality is preserved as the data is encrypted

• Vawlt does not store users’ master keys
• Thanks to the end-to-end encryption protocol

• Deleted files can be recovered in most clouds

16/4/25 WSDC 2025 38

Vawlt Operation

• Lazy locking provides a more responsive experience for users

16/4/25 WSDC 2025 39

4b
on each write

file
data
C1

local
write

2b 3b

local
read

4a3a
on each read

file
data
C2

8b

metadata

later
9b

CH

1st read

2a

metadata

1a

earlier

7b

CHCH

6b

metadata

5b1b
earlier

Leasing Object

Synchronous Call

Asynchronous Call

SW Write-Once Register

SW Register

Client 2
(reader)

Client 1
(writer)

Productization

• Many hours of development were required to redesign the system to
multiple platforms, build the UI, test, and maintain deployed versions
• Wrong assumptions/design decisions that needed to be corrected

• Metadata scalability: metadata sometimes doesn’t fit memory
• One client had 200GB of metadata!!!

• Mapping of user requirements: users like it simple and predictable
• Data retention: it is a fundamental requirement for recovering files

• Soft-delete, versioning, immutability policies (for dealing with Ransomware)
• Integration with other systems: S3 API is often preferable than a POSIX file system;

integration with key management systems, LDAP, etc.
• Bandwidth throttling: use of clients’ bandwidth needs to be limited
• Encrypted scalable cache: the client is not always trusted; a single file can be bigger

than the cache

16/4/25 WSDC 2025 41

Conclusions

16/4/25 WSDC 2025 43

Final Remarks

• Summary of presentation:
• Data-centric Byzantine fault-tolerant constructions for storage
• Academic systems: DepSky, SCFS, and Charon
• Commercial product: Vawlt

• Remarkably, Charon/Vawlt replication is built using only the described
storage constructions (a perfect match between theory and practice)
• However, Vawlt commercial viability required much more

development
• To the best of our knowledge, there is no similar system
• Vawlt has more than 200 customers with 2000 TBs
• See more on https://vawlt.io (they are always hiring…)

16/4/25 WSDC 2025 44

https://vawlt.io/

References

• Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, Paulo Sousa.
DepSky: Dependable and Secure Storage in a Cloud-of-Clouds. ACM Transactions on
Storage. Vol. 9, Num. 4. November 2013.

• Alysson Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Neves, Miguel Correia, Marcelo
Pasin, Paulo Verissimo. SCFS: a Shared Cloud-backed File System. USENIX’14: USENIX
Annual Technical Conference. June 2014.

• Tiago Oliveira, Ricardo Mendes, Alysson Bessani. Exploring Key-Value Stores in Multi-
Writer Byzantine-Resilient Register Emulations. OPODIS’16: The 20th International
Conference On Principles Of DIstributed Systems. December 2016.

• Ricardo Mendes, Tiago Oliveira, Vinicius Cogo, Nuno Neves, Alysson Bessani. Charon: A
Secure Cloud-of-Clouds System for Storing and Sharing Big Data. IEEE Transactions on
Cloud Computing. Vol. 9, Num. 4. October 2021.

• Diogo Avelãs, Hasan Heydari, Eduardo Alchieri, Tobias Distler, Alysson Bessani.
Probabilistic Byzantine Fault Tolerance. PODC'24: The 43rd ACM Symposium on
Principles of Distributed Computing. June 2024.

16/4/25 WSDC 2025 45

Obrigado!

• Alysson Bessani
• anbessani@fc.ul.pt
• www.di.fc.ul.pt/~bessani

16/4/25 46WSDC 2025

mailto:anbessani@fc.ul.pt
http://www.di.fc.ul.pt/~bessani

